TALK=T;RUN( 1, 1)
 
 ************************************************************
   Q1 created by VDI menu, Version 2018, Date 25/01/18
 CPVNAM=VDI; SPPNAM=FLAIR
 ************************************************************
  Echo DISPLAY / USE settings
  DISPLAY
  Library Case I405: Deposition, downpipe, Re=9.894E3
  ---------------------------------------------------
  The case considered is 2d steady, isothermal, turbulent flow
  of air and particles down a pipe with particle deposition on
  the wall of the pipe. The Eulerian drift flux model is used to
  simulate particle transport with deposition by means of the
  3-layer model of Bin & Zhou(2006), which accounts for deposition
  via gravity, Brownian and turbulent diffusion, and turbophoresis.
  This case has been studied experimentally by Liu & Agrawal(1974),
  who for fully-developed flow, measured deposition rates of particles
  to the walls of the pipe with nominal sizes ranging from 1.4 to 21
  microns in a 0.0127m pipe at air speeds of 11.85m/s and 60 m/s,
  corresponding to Reynolds numbers of 9,894 & 50,000, respectively.
  The present Q1 file considers the air speed of 11.85 m/s at a
  temperature of 22degC so as to replicate the experimental deposition
  of 14 different particles sizes onto the pipe wall in the
  fully-developed region of the flow.
  ENDDIS
  PHOTON USE
   p
 
 
 
   up -z
   view y
   con C6 x 1 fi;.1;pa
   vec x 1;pa
  ENDUSE
 ************************************************************
 IRUNN = 1 ;LIBREF = 0
 ************************************************************
  Group 1. Run Title
 TEXT(I405: Deposition, downpipe, Re=9.894E3  )
 ************************************************************
  Echo save-block settings for Group  1
  save1begin
  Eighteen different aerosol particle sizes with a density of
  920 kg/m^3 enter a vertical down pipe duct in an air stream of
  11.85 m/s at 22degC. The pipe is 80 diameters long, at which
  location the flow is fully developed. In the simulations the
  particle concentration is normalized by the inlet concentration.
  The case has been studied numerically by Zhao and Wu (2006),
  and experimentally by Liu & Agrawal(1974). The particle
  characteristics are listed below, and cover the 14 experimental
  sizes (runs 1 to 16), plus 4 additional smaller sizes( runs a
  to d) so as to cover the diffusion-dominated deposition regime.
 
    Run  diameter     Tr+      Vd+      Tr+      Vd+
         (microns)       measured          predicted
    a      0.05        -        -     1.24E-03  7.507E-05
    b      0.3         -        -     1.39E-02  2.378E-05
    c      0.75        -        -     6.77E-02  1.493E-05
    d      1.2         -        -     0.162     1.363E-05
    1      1.4        0.21   6.0E-5   0.216     1.391E-05
    2      2.5        0.64   2.6E-4   0.657     2.433E-05
    3      2.6        0.7    3.4E-4   0.708     2.640E-05
    4      3.2        1.1    8.1E-4   1.061     4.699E-05
    5      3.6        1.4    1.4E-3   1.335     7.408E-05
    6      3.7        1.5    1.5E-3   1.409     8.365E-05
    7      5.3        3.0    3.0E-3   2.854     8.151E-04
    8      7.2        5.5    9.7E-3   5.224     0.022
    10     8.1        6.9    3.1E-2   6.600     0.087
    11    10.0       10.0    5.2E-2   10.014    0.195
    12    10.1       10.7    9.5E-2   10.214    0.196
    13    14.0       20.6    0.15     19.536    0.238
    15    16.8       29.6    0.15     28.077    0.271
    16    21.0       46.3    0.15     43.785    0.311
 
  where Tr+ (=Tr*Ust^2/enul_g) is the dimensional particle relaxation
  time, Vd+ (=Vd/Ust)is the dimensionless deposition velocity, enul_g
  is the kinematic laminar viscosity, Ust (=0.73m/s) is the friction
  velocity, Tr (=rho_p*diam_p^2*C/(18.*rho_g*enul_g) is the particle
  relaxation time and C is the Cunningham slip coefficient.
 
   References
   ----------.
 
    Zhao, B. & Wu, J., "Modelling particle deposition from fully
    developed flow in ventilation duct", J. Atmospheric
    Environment, Vol.40, p457-466, (2006).
 
    Liu, B.Y.H.,& Agarwal,J.K.(1974). "Experimental observation
    of aerosol deposition in turbulent flow", Journal of Aerosol
    Science, 5, Vol.5, p145-155, (1974).
 
    Zhao, B. & Wu, J., "Particle deposition in indoor
    environments: Analysis of influencing factors", Journal of
    Hazardous Materials 147, p439-448, (2007).
 
    Lai, C.K., Nazaroff, W.W., "Modeling indoor particle
    deposition from turbulent flow onto smooth surfaces", Journal
    of Aerosol Science 31, p463-476, (2000)
  save1end
 ************************************************************
  Group 2. Transience
 STEADY = T
 ************************************************************
  Groups 3, 4, 5  Grid Information
    * Overall number of cells, RSET(M,NX,NY,NZ,tolerance)
 RSET(M,1,10,80)
    * Cylindrical-polar grid
 CARTES=F
 ************************************************************
  Group 6. Body-Fitted coordinates
 ************************************************************
  Group 7. Variables: STOREd,SOLVEd,NAMEd
    * Non-default variable names
 NAME(46)=VP18 ;NAME(47)=TP18
 NAME(49)=VP17 ;NAME(50)=TP17
 NAME(54)=VP16 ;NAME(55)=TP16
 NAME(59)=VP15 ;NAME(60)=TP15
 NAME(64)=VP14 ;NAME(65)=TP14
 NAME(69)=VP13 ;NAME(70)=TP13
 NAME(72)=TR13 ;NAME(74)=VP12
 NAME(75)=TP12 ;NAME(79)=VP11
 NAME(80)=TP11 ;NAME(84)=VP10
 NAME(85)=TP10 ;NAME(89)=VP9
 NAME(90)=TP9 ;NAME(94)=VP8
 NAME(95)=TP8 ;NAME(96)=VD8
 NAME(97)=TR8 ;NAME(99)=VP7
 NAME(100)=TP7 ;NAME(104)=VP6
 NAME(105)=TP6 ;NAME(108)=VP5
 NAME(109)=TP5 ;NAME(110)=VP4
 NAME(111)=TP4 ;NAME(112)=VP3
 NAME(113)=TP3 ;NAME(114)=VP2
 NAME(115)=TP2 ;NAME(116)=VP1
 NAME(117)=TP1 ;NAME(121)=DEP5
 NAME(125)=DEP4 ;NAME(129)=DEP3
 NAME(133)=DEP2 ;NAME(137)=VSTR
 NAME(140)=DEP1 ;NAME(144)=ENUL
 NAME(145)=YPLS ;NAME(146)=STRS
 NAME(147)=EPKE ;NAME(148)=DEN1
 NAME(149)=EL1 ;NAME(150)=ENUT
    * Solved variables list
 SOLVE(P1,V1,W1,C6,C7,C8,C9,C10)
 SOLVE(C11,C12,C13,C14,C15,C16,C17,C18)
 SOLVE(C19,C20,C21,C22,C23)
    * Stored variables list
 STORE(ENUT,EL1,DEN1,EPKE,STRS,YPLS,ENUL,DEP1)
 STORE(VSTR,DEP2,DEP3,DEP4,DEP5,TP1,VP1,TP2)
 STORE(VP2,TP3,VP3,TP4,VP4,TP5,VP5,TP6)
 STORE(VP6,TP7,VP7,TR8,VD8,TP8,VP8,TP9)
 STORE(VP9,TP10,VP10,TP11,VP11,TP12,VP12,TR13)
 STORE(TP13,VP13,TP14,VP14,TP15,VP15,TP16,VP16)
 STORE(TP17,VP17,TP18,VP18)
    * Additional solver options
 SOLUTN(P1,Y,Y,Y,N,N,Y)
 SOLUTN(C6,Y,Y,Y,N,N,Y)
 SOLUTN(C7,Y,Y,Y,N,N,Y)
 SOLUTN(C8,Y,Y,Y,N,N,Y)
 SOLUTN(C9,Y,Y,Y,N,N,Y)
 SOLUTN(C10,Y,Y,Y,N,N,Y)
 SOLUTN(C11,Y,Y,Y,N,N,Y)
 SOLUTN(C12,Y,Y,Y,N,N,Y)
 SOLUTN(C13,Y,Y,Y,N,N,Y)
 SOLUTN(C14,Y,Y,Y,N,N,Y)
 SOLUTN(C15,Y,Y,Y,N,N,Y)
 SOLUTN(C16,Y,Y,Y,N,N,Y)
 SOLUTN(C17,Y,Y,Y,N,N,Y)
 SOLUTN(C18,Y,Y,Y,N,N,Y)
 SOLUTN(C19,Y,Y,Y,N,N,Y)
 SOLUTN(C20,Y,Y,Y,N,N,Y)
 SOLUTN(C21,Y,Y,Y,N,N,Y)
 SOLUTN(C22,Y,Y,Y,N,N,Y)
 SOLUTN(C23,Y,Y,Y,N,N,Y)
 TURMOD(KEMODL)
 
 ************************************************************
  Echo save-block settings for Group  7
  save7begin
  save7end
 ************************************************************
  Group 8. Terms & Devices
 ************************************************************
  Group 9. Properties
 PRESS0 =1.01325E+05 ;TEMP0 =273.
    * Domain material index is   0 signifying:
    * Air at 20 deg C, 1 atm, treated as incompressible
 SETPRPS(1, 0)
 RHO1 =1.198
 ENUL =1.524E-05
 TMP1 = GRND1
 TMP1A =22. ;TMP1B =0.
 TMP1C =0.
 DVO1DT =3.41E-03
 PRT(EP)=1.314
 ************************************************************
  Group 10.Inter-Phase Transfer Processes
 ************************************************************
  Group 11.Initialise Var/Porosity Fields
 FIINIT(P1)=0. ;FIINIT(W1)=11.85
   No PATCHes used for this Group
 
 
 INIADD = F
 ************************************************************
  Group 12. Convection and diffusion adjustments
   No PATCHes used for this Group
 ************************************************************
  Group 13. Boundary & Special Sources
 
 PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1)
 COVAL(DFLUX, C6, GRND4, GRND4)
 COVAL(DFLUX, C7, GRND4, GRND4)
 COVAL(DFLUX, C8, GRND4, GRND4)
 COVAL(DFLUX, C9, GRND4, GRND4)
 COVAL(DFLUX, C10, GRND4, GRND4)
 COVAL(DFLUX, C11, GRND4, GRND4)
 COVAL(DFLUX, C12, GRND4, GRND4)
 COVAL(DFLUX, C13, GRND4, GRND4)
 COVAL(DFLUX, C14, GRND4, GRND4)
 COVAL(DFLUX, C15, GRND4, GRND4)
 COVAL(DFLUX, C16, GRND4, GRND4)
 COVAL(DFLUX, C17, GRND4, GRND4)
 COVAL(DFLUX, C18, GRND4, GRND4)
 COVAL(DFLUX, C19, GRND4, GRND4)
 COVAL(DFLUX, C20, GRND4, GRND4)
 COVAL(DFLUX, C21, GRND4, GRND4)
 COVAL(DFLUX, C22, GRND4, GRND4)
 COVAL(DFLUX, C23, GRND4, GRND4)
 
 BUOYA =0. ; BUOYB =0.
 BUOYC =9.81
 EGWF = T
 ************************************************************
  Echo save-block settings for Group 13
  save13begin
  ** estimate for turbulent inlet intensity
      for fully developed duct flow
real(din,win,tint,kein,epin,mixl,fric,temk)
real(reyn,ust,tvis,tvisn,enugas,rhogas)
temk=22.0+temp0
din=0.0127
win=11.85
rhogas=press0/(287.0*temk)
rhogas
enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas
enugas
reyn=win*din/enugas
reyn
fric=1./(1.82*log10(reyn)-1.64)**2
fric
ust=win*(fric/8.)**0.5
ust
kein=fric*win*win/4.
mixl=0.09*0.5*din
mixl
epin=0.1643*kein**1.5/mixl
kein
epin
tint=kein**0.5/win
tint
tvis=0.09*kein*kein/epin
tvis
tvisn=tvis/(ust*din)
tvisn
 
 
 
real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl)
   ** no of phases set by menu limit
integer(npart);npart=5
   ** add more phases
integer(npext,nptot)
npext=13  ! no of extra phases above menu default of 5
nptot=npart+npext
nptot
 
    ** Particle diameter & density
array(pdia,real,nptot)
array(pden,real,nptot)
 
rho_p=920.
 
   ** additional 6 phases for full coverage
      of diffusion-dominated regime
pdia(1)=0.05;pdia(2)=0.3;pdia(3)=0.75;pdia(4)=1.2
 
pdia(5)=1.4;pdia(6)=2.5;pdia(7)=2.6
pdia(8)=3.2;pdia(9)=3.6
 
do ii=1,nptot
+ pden(ii)=rho_p
enddo
 
pdia(10)=3.7;pdia(11)=5.3;pdia(12)=7.2;pdia(13)=8.1
pdia(14)=10.0;pdia(15)=10.1;pdia(16)=14.0
pdia(17)=16.8;pdia(18)=21.0
 
integer(kk)
kk=10
       set densities & diameters of extra phases
DO ii=npart+1,nptot
+ kk=kk+1
+ SOLVE(C:kk:)
+ SOLUTN(C:kk:,y,y,y,p,p,p)
+ RELAX(C:kk:,FALSDT,10.0)
+ COVAL(DFLUX ,C:kk: , GRND4 , GRND4 )
+ spedat(set,dflux,diap:ii:,r,pdia(ii)*1.e-6)
+ spedat(set,dflux,denp:ii:,r,pden(ii))
   + store(tr:ii:)
   + store(vd:ii:)
+ store(tp:ii:)
+ store(vp:ii:)
   + store(vs:ii:)
ENDDO
 
do ii=1,nptot
dpart=pdia(ii)*1.e-6
rho_p=pden(ii)
 
 
   ** Stokes-flow slip velocity
grava=9.81
vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas)
rey=vslip*dpart/enugas
ii
vdep=vslip
vslip
rey
tpart=rho_p*dpart**2/(18.*rhogas*enugas)
tpart
tpl=tpart*ust*ust/enugas
tpl
enddo
 
    ** print to the "inforout" file the wall deposition
       results in the fully-developed flow region.
integer(izp)
izp=75
(make1 vs_ny is 0)
(store1 vs_ny is VSTR[1,NY,:izp:])
(print V* is vs_ny)
(make1 yp_ny is 0)
(store1 yp_ny is YPLS[1,NY,:izp:])
(print y+ is yp_ny)
 
do jj=1,nptot
  (make1 tr_:jj: is 0)
  (store1 tr_:jj: is TR:jj:[1,NY,:izp:,1])
  (print Tr_:jj: is tr_:jj:)
  (make1 vd_:jj: is 0)
  (store1 vd_:jj: is VD:jj:[1,NY,:izp:])
  (print Vd_:jj: is vd_:jj:)
(make1 tp_:jj: is 0)
(store1 tp_:jj: is TP:jj:[1,NY,:izp:])
(print Tr+_:jj: is tp_:jj:)
(make1 vp_:jj: is 0)
(store1 vp_:jj: is VP:jj:[1,NY,:izp:])
(print Vd+_:jj: is vp_:jj:)
enddo
  save13end
 ************************************************************
  Group 14. Downstream Pressure For PARAB
 ************************************************************
  Group 15. Terminate Sweeps
 LSWEEP = 140
 RESFAC =1.0E-04
 ************************************************************
  Group 16. Terminate Iterations
 LITER(P1)=50
 ************************************************************
  Group 17. Relaxation
 RELAX(P1 ,LINRLX,1. )
 RELAX(KE ,LINRLX,0.5 )
 RELAX(EP ,LINRLX,0.5 )
 RELAX(C6 ,FALSDT,10. )
 RELAX(C11 ,FALSDT,10. )
 RELAX(C12 ,FALSDT,10. )
 RELAX(C13 ,FALSDT,10. )
 RELAX(C14 ,FALSDT,10. )
 RELAX(C15 ,FALSDT,10. )
 RELAX(C16 ,FALSDT,10. )
 RELAX(C17 ,FALSDT,10. )
 RELAX(C18 ,FALSDT,10. )
 RELAX(C19 ,FALSDT,10. )
 RELAX(C20 ,FALSDT,10. )
 RELAX(C21 ,FALSDT,10. )
 RELAX(C22 ,FALSDT,10. )
 RELAX(C23 ,FALSDT,10. )
 KELIN = 3
 ************************************************************
  Group 18. Limits
 VARMAX(C6)=1. ;VARMIN(C6)=0.
 ************************************************************
  Group 19. EARTH Calls To GROUND Station
 NAMGRD =FLAR
 GENK = T
 PARSOL = F
 ISG62 = 0
 SPEDAT(SET,DFLUX,DIAP6,R,5.6)
 SPEDAT(SET,DFLUX,DENP6,R,920.)
 SPEDAT(SET,DFLUX,DIAP7,R,6.0E-06)
 SPEDAT(SET,DFLUX,DENP7,R,920.)
 SPEDAT(SET,DFLUX,DIAP8,R,7.8E-06)
 SPEDAT(SET,DFLUX,DENP8,R,920.)
 SPEDAT(SET,DFLUX,DIAP9,R,8.399999E-06)
 SPEDAT(SET,DFLUX,DENP9,R,920.)
 SPEDAT(SET,DFLUX,DIAP10,R,1.05E-05)
 SPEDAT(SET,DFLUX,DENP10,R,920.)
 SPEDAT(SET,DFLUX,DIAP11,R,1.4E-05)
 SPEDAT(SET,DFLUX,DENP11,R,920.)
 SPEDAT(SET,DFLUX,DIAP12,R,1.68E-05)
 SPEDAT(SET,DFLUX,DENP12,R,920.)
 SPEDAT(SET,DFLUX,DIAP13,R,2.1E-05)
 SPEDAT(SET,DFLUX,DENP13,R,920.)
 SPEDAT(SET,DFLUX,DIAP14,R,2.1E-05)
 SPEDAT(SET,DFLUX,DENP14,R,920.)
 SPEDAT(SET,DFLUX,DIAP15,R,1.0E-08)
 SPEDAT(SET,DFLUX,DENP15,R,920.)
 SPEDAT(SET,DFLUX,DIAP16,R,3.0E-07)
 SPEDAT(SET,DFLUX,DENP16,R,920.)
 SPEDAT(SET,DFLUX,DIAP17,R,1.2E-06)
 SPEDAT(SET,DFLUX,DENP17,R,920.)
 SPEDAT(SET,DFLUX,DIAP18,R,1.2E-06)
 SPEDAT(SET,DFLUX,DENP18,R,920.)
 SPEDAT(SET,DFLUX,DFMODL,L,T)
 SPEDAT(SET,DFLUX,DEPOMOD,I,3)
 SPEDAT(SET,DFLUX,DENP1,R,920.)
 SPEDAT(SET,DFLUX,DIAP1,R,5.0E-08)
 SPEDAT(SET,DFLUX,DENP2,R,920.)
 SPEDAT(SET,DFLUX,DIAP2,R,3.0E-07)
 SPEDAT(SET,DFLUX,DENP3,R,920.)
 SPEDAT(SET,DFLUX,DIAP3,R,7.5E-07)
 SPEDAT(SET,DFLUX,DENP4,R,920.)
 SPEDAT(SET,DFLUX,DIAP4,R,1.2E-06)
 SPEDAT(SET,DFLUX,DENP5,R,920.)
 SPEDAT(SET,DFLUX,DIAP5,R,1.4E-06)
 SPEDAT(SET,GXMONI,PLOTALL,L,T)
 ************************************************************
  Group 20. Preliminary Printout
 DISTIL = T ;NULLPR = F
 NDST = 0
 DSTTOL =1.0E-02
 EX(P1)=102.099998 ;EX(V1)=2.702E-03
 EX(W1)=13.17 ;EX(KE)=0.8443
 EX(EP)=339.399994 ;EX(C6)=0.9999
 EX(C7)=0.9998 ;EX(C8)=0.9998
 EX(C9)=0.9996 ;EX(C10)=0.9993
 EX(C11)=0.9992 ;EX(C12)=0.9916
 EX(C13)=0.9996 ;EX(C14)=0.9993
 EX(C15)=0.9992 ;EX(C16)=0.9916
 EX(C17)=0.8103 ;EX(C18)=0.5956
 EX(C19)=0.4797 ;EX(C20)=0.4788
 EX(C21)=0.4527 ;EX(C22)=0.4378
 EX(C23)=0.4238 ;EX(VP18)=0.03118
 EX(TP18)=4.429 ;EX(VP17)=0.02722
 EX(TP17)=2.84 ;EX(VP16)=0.02393
 EX(TP16)=1.976 ;EX(VP15)=0.01967
 EX(TP15)=1.033 ;EX(VP14)=0.01953
 EX(TP14)=1.013 ;EX(VP13)=9.044E-03
 EX(TP13)=0.6672 ;EX(TR13)=1.872E-04
 EX(VP12)=2.487E-03 ;EX(TP12)=0.5285
 EX(VP11)=8.919E-05 ;EX(TP11)=0.2887
 EX(VP10)=8.692E-06 ;EX(TP10)=0.1425
 EX(VP9)=7.68E-06 ;EX(TP9)=0.1351
 EX(VP8)=4.832E-06 ;EX(TP8)=0.1073
 EX(VD8)=3.572E-06 ;EX(TR8)=3.011E-05
 EX(VP7)=2.688E-06 ;EX(TP7)=0.07166
 EX(VP6)=2.474E-06 ;EX(TP6)=0.06641
 EX(VP5)=1.398E-06 ;EX(TP5)=0.02185
 EX(VP4)=1.368E-06 ;EX(TP4)=0.01633
 EX(VP3)=1.496E-06 ;EX(TP3)=6.846E-03
 EX(VP2)=2.379E-06 ;EX(TP2)=1.406E-03
 EX(VP1)=7.507E-06 ;EX(TP1)=1.249E-04
 EX(DEP5)=1.235E-06 ;EX(DEP4)=1.208E-06
 EX(DEP3)=1.32E-06 ;EX(DEP2)=2.099E-06
 EX(VSTR)=0.07367 ;EX(DEP1)=6.619E-06
 EX(ENUL)=1.524E-05 ;EX(YPLS)=2.659
 EX(STRS)=0.05432 ;EX(EPKE)=277.100006
 EX(DEN1)=1.198 ;EX(EL1)=7.267E-04
 EX(ENUT)=3.3E-04
 ************************************************************
  Group 21. Print-out of Variables
 ************************************************************
  Group 22. Monitor Print-Out
 IXMON = 1 ;IYMON = 10 ;IZMON = 75
 NPRMON = 100000
 NPRMNT = 1
 TSTSWP = -1
 ************************************************************
  Group 23.Field Print-Out & Plot Control
 NPRINT = 100000
 ISWPRF = 1 ;ISWPRL = 100000
   No PATCHes used for this Group
 ************************************************************
  Group 24. Dumps For Restarts
 
 GVIEW(P,1.,0.,0.)
 GVIEW(UP,0.,0.,-1.)
 GVIEW(NEARPLANE,1.524E-03)
 GVIEW(VDIS,0.41468)
 GVIEW(CENTRE,3.014993E-04,5.254888E-03,0.48186)
 
> DOM,    SIZE,        1.000000E-01, 6.350000E-03, 1.020000E+00
> DOM,    MONIT,       5.000000E-02, 5.799891E-03, 9.498749E-01
> DOM,    SCALE,       1.000000E+01, 1.000000E+01, 1.000000E+00
> DOM,    INCREMENT,   1.000000E-02, 1.000000E-02, 1.000000E-02
> GRID,   AUTO,         T F F
  > GRID,   RSET_X_1,      1, 1.000000E+00
> GRID,   RSET_Y_1,     10, 1.150000E+00,G
  > GRID,   RSET_Z_1,     80, 1.000000E+00
> DOM,    INI_AMB,    YES
> DOM,    INI_BUOY,   YES
 
> OBJ,    NAME,        WALLN
> OBJ,    POSITION,    0.000000E+00, AT_END,       0.000000E+00
> OBJ,    SIZE,        TO_END,       0.000000E+00, TO_END
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    polcu10
> OBJ,    VISIBLE,     NO
> OBJ,    TYPE,        PLATE
 
> OBJ,    NAME,        INL
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, 0.000000E+00
> OBJ,    SIZE,        TO_END,       TO_END,       0.000000E+00
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    polcu5t
> OBJ,    TYPE,        INLET
> OBJ,    PRESSURE,     P_AMBIENT
> OBJ,    VELOCITY,    0. ,0. ,11.85
> OBJ,    INLET_C6,    1.
> OBJ,    INLET_C7,    1.
> OBJ,    INLET_C8,    1.
> OBJ,    INLET_C9,    1.
> OBJ,    INLET_C10,   1.
> OBJ,    INLET_C11,   1.
> OBJ,    INLET_C12,   1.
> OBJ,    INLET_C13,   1.
> OBJ,    INLET_C14,   1.
> OBJ,    INLET_C15,   1.
> OBJ,    INLET_C16,   1.
> OBJ,    INLET_C17,   1.
> OBJ,    INLET_C18,   1.
> OBJ,    INLET_C19,   1.
> OBJ,    INLET_C20,   1.
> OBJ,    INLET_C21,   1.
> OBJ,    INLET_C22,   1.
> OBJ,    INLET_C23,   1.
> OBJ,    TURB-INTENS, 5.
 
> OBJ,    NAME,        OUT
> OBJ,    POSITION,    0.000000E+00, 0.000000E+00, AT_END
> OBJ,    SIZE,        TO_END,       TO_END,       0.000000E+00
> OBJ,    DOMCLIP,     NO
> OBJ,    GEOMETRY,    polcubet
> OBJ,    TYPE,        OPENING
> OBJ,    PRESSURE,     P_AMBIENT
> OBJ,    COEFFICIENT, 1000.
> OBJ,    TURBULENCE,  SAME , SAME
STOP
kk=10
  ** set deposition boundary conditions
     for additional aerosol phases
DO ii=npart+1,nptot
+ kk=kk+1
+ COVAL(PW1,C:kk:, GRND3 ,0. )
ENDDO