TALK=T;RUN( 1, 1) ************************************************************ Q1 created by VDI menu, Version 2018, Date 25/01/18 CPVNAM=VDI; SPPNAM=FLAIR ************************************************************ Echo DISPLAY / USE settings DISPLAY Library Case I405: Deposition, downpipe, Re=9.894E3 --------------------------------------------------- The case considered is 2d steady, isothermal, turbulent flow of air and particles down a pipe with particle deposition on the wall of the pipe. The Eulerian drift flux model is used to simulate particle transport with deposition by means of the 3-layer model of Bin & Zhou(2006), which accounts for deposition via gravity, Brownian and turbulent diffusion, and turbophoresis. This case has been studied experimentally by Liu & Agrawal(1974), who for fully-developed flow, measured deposition rates of particles to the walls of the pipe with nominal sizes ranging from 1.4 to 21 microns in a 0.0127m pipe at air speeds of 11.85m/s and 60 m/s, corresponding to Reynolds numbers of 9,894 & 50,000, respectively. The present Q1 file considers the air speed of 11.85 m/s at a temperature of 22degC so as to replicate the experimental deposition of 14 different particles sizes onto the pipe wall in the fully-developed region of the flow. ENDDIS PHOTON USE p up -z view y con C6 x 1 fi;.1;pa vec x 1;pa ENDUSE ************************************************************ IRUNN = 1 ;LIBREF = 0 ************************************************************ Group 1. Run Title TEXT(I405: Deposition, downpipe, Re=9.894E3 ) ************************************************************ Echo save-block settings for Group 1 save1begin Eighteen different aerosol particle sizes with a density of 920 kg/m^3 enter a vertical down pipe duct in an air stream of 11.85 m/s at 22degC. The pipe is 80 diameters long, at which location the flow is fully developed. In the simulations the particle concentration is normalized by the inlet concentration. The case has been studied numerically by Zhao and Wu (2006), and experimentally by Liu & Agrawal(1974). The particle characteristics are listed below, and cover the 14 experimental sizes (runs 1 to 16), plus 4 additional smaller sizes( runs a to d) so as to cover the diffusion-dominated deposition regime. Run diameter Tr+ Vd+ Tr+ Vd+ (microns) measured predicted a 0.05 - - 1.24E-03 7.507E-05 b 0.3 - - 1.39E-02 2.378E-05 c 0.75 - - 6.77E-02 1.493E-05 d 1.2 - - 0.162 1.363E-05 1 1.4 0.21 6.0E-5 0.216 1.391E-05 2 2.5 0.64 2.6E-4 0.657 2.433E-05 3 2.6 0.7 3.4E-4 0.708 2.640E-05 4 3.2 1.1 8.1E-4 1.061 4.699E-05 5 3.6 1.4 1.4E-3 1.335 7.408E-05 6 3.7 1.5 1.5E-3 1.409 8.365E-05 7 5.3 3.0 3.0E-3 2.854 8.151E-04 8 7.2 5.5 9.7E-3 5.224 0.022 10 8.1 6.9 3.1E-2 6.600 0.087 11 10.0 10.0 5.2E-2 10.014 0.195 12 10.1 10.7 9.5E-2 10.214 0.196 13 14.0 20.6 0.15 19.536 0.238 15 16.8 29.6 0.15 28.077 0.271 16 21.0 46.3 0.15 43.785 0.311 where Tr+ (=Tr*Ust^2/enul_g) is the dimensional particle relaxation time, Vd+ (=Vd/Ust)is the dimensionless deposition velocity, enul_g is the kinematic laminar viscosity, Ust (=0.73m/s) is the friction velocity, Tr (=rho_p*diam_p^2*C/(18.*rho_g*enul_g) is the particle relaxation time and C is the Cunningham slip coefficient. References ----------. Zhao, B. & Wu, J., "Modelling particle deposition from fully developed flow in ventilation duct", J. Atmospheric Environment, Vol.40, p457-466, (2006). Liu, B.Y.H.,& Agarwal,J.K.(1974). "Experimental observation of aerosol deposition in turbulent flow", Journal of Aerosol Science, 5, Vol.5, p145-155, (1974). Zhao, B. & Wu, J., "Particle deposition in indoor environments: Analysis of influencing factors", Journal of Hazardous Materials 147, p439-448, (2007). Lai, C.K., Nazaroff, W.W., "Modeling indoor particle deposition from turbulent flow onto smooth surfaces", Journal of Aerosol Science 31, p463-476, (2000) save1end ************************************************************ Group 2. Transience STEADY = T ************************************************************ Groups 3, 4, 5 Grid Information * Overall number of cells, RSET(M,NX,NY,NZ,tolerance) RSET(M,1,10,80) * Cylindrical-polar grid CARTES=F ************************************************************ Group 6. Body-Fitted coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd * Non-default variable names NAME(46)=VP18 ;NAME(47)=TP18 NAME(49)=VP17 ;NAME(50)=TP17 NAME(54)=VP16 ;NAME(55)=TP16 NAME(59)=VP15 ;NAME(60)=TP15 NAME(64)=VP14 ;NAME(65)=TP14 NAME(69)=VP13 ;NAME(70)=TP13 NAME(72)=TR13 ;NAME(74)=VP12 NAME(75)=TP12 ;NAME(79)=VP11 NAME(80)=TP11 ;NAME(84)=VP10 NAME(85)=TP10 ;NAME(89)=VP9 NAME(90)=TP9 ;NAME(94)=VP8 NAME(95)=TP8 ;NAME(96)=VD8 NAME(97)=TR8 ;NAME(99)=VP7 NAME(100)=TP7 ;NAME(104)=VP6 NAME(105)=TP6 ;NAME(108)=VP5 NAME(109)=TP5 ;NAME(110)=VP4 NAME(111)=TP4 ;NAME(112)=VP3 NAME(113)=TP3 ;NAME(114)=VP2 NAME(115)=TP2 ;NAME(116)=VP1 NAME(117)=TP1 ;NAME(121)=DEP5 NAME(125)=DEP4 ;NAME(129)=DEP3 NAME(133)=DEP2 ;NAME(137)=VSTR NAME(140)=DEP1 ;NAME(144)=ENUL NAME(145)=YPLS ;NAME(146)=STRS NAME(147)=EPKE ;NAME(148)=DEN1 NAME(149)=EL1 ;NAME(150)=ENUT * Solved variables list SOLVE(P1,V1,W1,C6,C7,C8,C9,C10) SOLVE(C11,C12,C13,C14,C15,C16,C17,C18) SOLVE(C19,C20,C21,C22,C23) * Stored variables list STORE(ENUT,EL1,DEN1,EPKE,STRS,YPLS,ENUL,DEP1) STORE(VSTR,DEP2,DEP3,DEP4,DEP5,TP1,VP1,TP2) STORE(VP2,TP3,VP3,TP4,VP4,TP5,VP5,TP6) STORE(VP6,TP7,VP7,TR8,VD8,TP8,VP8,TP9) STORE(VP9,TP10,VP10,TP11,VP11,TP12,VP12,TR13) STORE(TP13,VP13,TP14,VP14,TP15,VP15,TP16,VP16) STORE(TP17,VP17,TP18,VP18) * Additional solver options SOLUTN(P1,Y,Y,Y,N,N,Y) SOLUTN(C6,Y,Y,Y,N,N,Y) SOLUTN(C7,Y,Y,Y,N,N,Y) SOLUTN(C8,Y,Y,Y,N,N,Y) SOLUTN(C9,Y,Y,Y,N,N,Y) SOLUTN(C10,Y,Y,Y,N,N,Y) SOLUTN(C11,Y,Y,Y,N,N,Y) SOLUTN(C12,Y,Y,Y,N,N,Y) SOLUTN(C13,Y,Y,Y,N,N,Y) SOLUTN(C14,Y,Y,Y,N,N,Y) SOLUTN(C15,Y,Y,Y,N,N,Y) SOLUTN(C16,Y,Y,Y,N,N,Y) SOLUTN(C17,Y,Y,Y,N,N,Y) SOLUTN(C18,Y,Y,Y,N,N,Y) SOLUTN(C19,Y,Y,Y,N,N,Y) SOLUTN(C20,Y,Y,Y,N,N,Y) SOLUTN(C21,Y,Y,Y,N,N,Y) SOLUTN(C22,Y,Y,Y,N,N,Y) SOLUTN(C23,Y,Y,Y,N,N,Y) TURMOD(KEMODL) ************************************************************ Echo save-block settings for Group 7 save7begin save7end ************************************************************ Group 8. Terms & Devices ************************************************************ Group 9. Properties PRESS0 =1.01325E+05 ;TEMP0 =273. * Domain material index is 0 signifying: * Air at 20 deg C, 1 atm, treated as incompressible SETPRPS(1, 0) RHO1 =1.198 ENUL =1.524E-05 TMP1 = GRND1 TMP1A =22. ;TMP1B =0. TMP1C =0. DVO1DT =3.41E-03 PRT(EP)=1.314 ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initialise Var/Porosity Fields FIINIT(P1)=0. ;FIINIT(W1)=11.85 No PATCHes used for this Group INIADD = F ************************************************************ Group 12. Convection and diffusion adjustments No PATCHes used for this Group ************************************************************ Group 13. Boundary & Special Sources PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(DFLUX, C6, GRND4, GRND4) COVAL(DFLUX, C7, GRND4, GRND4) COVAL(DFLUX, C8, GRND4, GRND4) COVAL(DFLUX, C9, GRND4, GRND4) COVAL(DFLUX, C10, GRND4, GRND4) COVAL(DFLUX, C11, GRND4, GRND4) COVAL(DFLUX, C12, GRND4, GRND4) COVAL(DFLUX, C13, GRND4, GRND4) COVAL(DFLUX, C14, GRND4, GRND4) COVAL(DFLUX, C15, GRND4, GRND4) COVAL(DFLUX, C16, GRND4, GRND4) COVAL(DFLUX, C17, GRND4, GRND4) COVAL(DFLUX, C18, GRND4, GRND4) COVAL(DFLUX, C19, GRND4, GRND4) COVAL(DFLUX, C20, GRND4, GRND4) COVAL(DFLUX, C21, GRND4, GRND4) COVAL(DFLUX, C22, GRND4, GRND4) COVAL(DFLUX, C23, GRND4, GRND4) BUOYA =0. ; BUOYB =0. BUOYC =9.81 EGWF = T ************************************************************ Echo save-block settings for Group 13 save13begin ** estimate for turbulent inlet intensity for fully developed duct flow real(din,win,tint,kein,epin,mixl,fric,temk) real(reyn,ust,tvis,tvisn,enugas,rhogas) temk=22.0+temp0 din=0.0127 win=11.85 rhogas=press0/(287.0*temk) rhogas enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas enugas reyn=win*din/enugas reyn fric=1./(1.82*log10(reyn)-1.64)**2 fric ust=win*(fric/8.)**0.5 ust kein=fric*win*win/4. mixl=0.09*0.5*din mixl epin=0.1643*kein**1.5/mixl kein epin tint=kein**0.5/win tint tvis=0.09*kein*kein/epin tvis tvisn=tvis/(ust*din) tvisn real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl) ** no of phases set by menu limit integer(npart);npart=5 ** add more phases integer(npext,nptot) npext=13 ! no of extra phases above menu default of 5 nptot=npart+npext nptot ** Particle diameter & density array(pdia,real,nptot) array(pden,real,nptot) rho_p=920. ** additional 6 phases for full coverage of diffusion-dominated regime pdia(1)=0.05;pdia(2)=0.3;pdia(3)=0.75;pdia(4)=1.2 pdia(5)=1.4;pdia(6)=2.5;pdia(7)=2.6 pdia(8)=3.2;pdia(9)=3.6 do ii=1,nptot + pden(ii)=rho_p enddo pdia(10)=3.7;pdia(11)=5.3;pdia(12)=7.2;pdia(13)=8.1 pdia(14)=10.0;pdia(15)=10.1;pdia(16)=14.0 pdia(17)=16.8;pdia(18)=21.0 integer(kk) kk=10 set densities & diameters of extra phases DO ii=npart+1,nptot + kk=kk+1 + SOLVE(C:kk:) + SOLUTN(C:kk:,y,y,y,p,p,p) + RELAX(C:kk:,FALSDT,10.0) + COVAL(DFLUX ,C:kk: , GRND4 , GRND4 ) + spedat(set,dflux,diap:ii:,r,pdia(ii)*1.e-6) + spedat(set,dflux,denp:ii:,r,pden(ii)) + store(tr:ii:) + store(vd:ii:) + store(tp:ii:) + store(vp:ii:) + store(vs:ii:) ENDDO do ii=1,nptot dpart=pdia(ii)*1.e-6 rho_p=pden(ii) ** Stokes-flow slip velocity grava=9.81 vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas) rey=vslip*dpart/enugas ii vdep=vslip vslip rey tpart=rho_p*dpart**2/(18.*rhogas*enugas) tpart tpl=tpart*ust*ust/enugas tpl enddo ** print to the "inforout" file the wall deposition results in the fully-developed flow region. integer(izp) izp=75 (make1 vs_ny is 0) (store1 vs_ny is VSTR[1,NY,:izp:]) (print V* is vs_ny) (make1 yp_ny is 0) (store1 yp_ny is YPLS[1,NY,:izp:]) (print y+ is yp_ny) do jj=1,nptot (make1 tr_:jj: is 0) (store1 tr_:jj: is TR:jj:[1,NY,:izp:,1]) (print Tr_:jj: is tr_:jj:) (make1 vd_:jj: is 0) (store1 vd_:jj: is VD:jj:[1,NY,:izp:]) (print Vd_:jj: is vd_:jj:) (make1 tp_:jj: is 0) (store1 tp_:jj: is TP:jj:[1,NY,:izp:]) (print Tr+_:jj: is tp_:jj:) (make1 vp_:jj: is 0) (store1 vp_:jj: is VP:jj:[1,NY,:izp:]) (print Vd+_:jj: is vp_:jj:) enddo save13end ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 140 RESFAC =1.0E-04 ************************************************************ Group 16. Terminate Iterations LITER(P1)=50 ************************************************************ Group 17. Relaxation RELAX(P1 ,LINRLX,1. ) RELAX(KE ,LINRLX,0.5 ) RELAX(EP ,LINRLX,0.5 ) RELAX(C6 ,FALSDT,10. ) RELAX(C11 ,FALSDT,10. ) RELAX(C12 ,FALSDT,10. ) RELAX(C13 ,FALSDT,10. ) RELAX(C14 ,FALSDT,10. ) RELAX(C15 ,FALSDT,10. ) RELAX(C16 ,FALSDT,10. ) RELAX(C17 ,FALSDT,10. ) RELAX(C18 ,FALSDT,10. ) RELAX(C19 ,FALSDT,10. ) RELAX(C20 ,FALSDT,10. ) RELAX(C21 ,FALSDT,10. ) RELAX(C22 ,FALSDT,10. ) RELAX(C23 ,FALSDT,10. ) KELIN = 3 ************************************************************ Group 18. Limits VARMAX(C6)=1. ;VARMIN(C6)=0. ************************************************************ Group 19. EARTH Calls To GROUND Station NAMGRD =FLAR GENK = T PARSOL = F ISG62 = 0 SPEDAT(SET,DFLUX,DIAP6,R,5.6) SPEDAT(SET,DFLUX,DENP6,R,920.) SPEDAT(SET,DFLUX,DIAP7,R,6.0E-06) SPEDAT(SET,DFLUX,DENP7,R,920.) SPEDAT(SET,DFLUX,DIAP8,R,7.8E-06) SPEDAT(SET,DFLUX,DENP8,R,920.) SPEDAT(SET,DFLUX,DIAP9,R,8.399999E-06) SPEDAT(SET,DFLUX,DENP9,R,920.) SPEDAT(SET,DFLUX,DIAP10,R,1.05E-05) SPEDAT(SET,DFLUX,DENP10,R,920.) SPEDAT(SET,DFLUX,DIAP11,R,1.4E-05) SPEDAT(SET,DFLUX,DENP11,R,920.) SPEDAT(SET,DFLUX,DIAP12,R,1.68E-05) SPEDAT(SET,DFLUX,DENP12,R,920.) SPEDAT(SET,DFLUX,DIAP13,R,2.1E-05) SPEDAT(SET,DFLUX,DENP13,R,920.) SPEDAT(SET,DFLUX,DIAP14,R,2.1E-05) SPEDAT(SET,DFLUX,DENP14,R,920.) SPEDAT(SET,DFLUX,DIAP15,R,1.0E-08) SPEDAT(SET,DFLUX,DENP15,R,920.) SPEDAT(SET,DFLUX,DIAP16,R,3.0E-07) SPEDAT(SET,DFLUX,DENP16,R,920.) SPEDAT(SET,DFLUX,DIAP17,R,1.2E-06) SPEDAT(SET,DFLUX,DENP17,R,920.) SPEDAT(SET,DFLUX,DIAP18,R,1.2E-06) SPEDAT(SET,DFLUX,DENP18,R,920.) SPEDAT(SET,DFLUX,DFMODL,L,T) SPEDAT(SET,DFLUX,DEPOMOD,I,3) SPEDAT(SET,DFLUX,DENP1,R,920.) SPEDAT(SET,DFLUX,DIAP1,R,5.0E-08) SPEDAT(SET,DFLUX,DENP2,R,920.) SPEDAT(SET,DFLUX,DIAP2,R,3.0E-07) SPEDAT(SET,DFLUX,DENP3,R,920.) SPEDAT(SET,DFLUX,DIAP3,R,7.5E-07) SPEDAT(SET,DFLUX,DENP4,R,920.) SPEDAT(SET,DFLUX,DIAP4,R,1.2E-06) SPEDAT(SET,DFLUX,DENP5,R,920.) SPEDAT(SET,DFLUX,DIAP5,R,1.4E-06) SPEDAT(SET,GXMONI,PLOTALL,L,T) ************************************************************ Group 20. Preliminary Printout DISTIL = T ;NULLPR = F NDST = 0 DSTTOL =1.0E-02 EX(P1)=102.099998 ;EX(V1)=2.702E-03 EX(W1)=13.17 ;EX(KE)=0.8443 EX(EP)=339.399994 ;EX(C6)=0.9999 EX(C7)=0.9998 ;EX(C8)=0.9998 EX(C9)=0.9996 ;EX(C10)=0.9993 EX(C11)=0.9992 ;EX(C12)=0.9916 EX(C13)=0.9996 ;EX(C14)=0.9993 EX(C15)=0.9992 ;EX(C16)=0.9916 EX(C17)=0.8103 ;EX(C18)=0.5956 EX(C19)=0.4797 ;EX(C20)=0.4788 EX(C21)=0.4527 ;EX(C22)=0.4378 EX(C23)=0.4238 ;EX(VP18)=0.03118 EX(TP18)=4.429 ;EX(VP17)=0.02722 EX(TP17)=2.84 ;EX(VP16)=0.02393 EX(TP16)=1.976 ;EX(VP15)=0.01967 EX(TP15)=1.033 ;EX(VP14)=0.01953 EX(TP14)=1.013 ;EX(VP13)=9.044E-03 EX(TP13)=0.6672 ;EX(TR13)=1.872E-04 EX(VP12)=2.487E-03 ;EX(TP12)=0.5285 EX(VP11)=8.919E-05 ;EX(TP11)=0.2887 EX(VP10)=8.692E-06 ;EX(TP10)=0.1425 EX(VP9)=7.68E-06 ;EX(TP9)=0.1351 EX(VP8)=4.832E-06 ;EX(TP8)=0.1073 EX(VD8)=3.572E-06 ;EX(TR8)=3.011E-05 EX(VP7)=2.688E-06 ;EX(TP7)=0.07166 EX(VP6)=2.474E-06 ;EX(TP6)=0.06641 EX(VP5)=1.398E-06 ;EX(TP5)=0.02185 EX(VP4)=1.368E-06 ;EX(TP4)=0.01633 EX(VP3)=1.496E-06 ;EX(TP3)=6.846E-03 EX(VP2)=2.379E-06 ;EX(TP2)=1.406E-03 EX(VP1)=7.507E-06 ;EX(TP1)=1.249E-04 EX(DEP5)=1.235E-06 ;EX(DEP4)=1.208E-06 EX(DEP3)=1.32E-06 ;EX(DEP2)=2.099E-06 EX(VSTR)=0.07367 ;EX(DEP1)=6.619E-06 EX(ENUL)=1.524E-05 ;EX(YPLS)=2.659 EX(STRS)=0.05432 ;EX(EPKE)=277.100006 EX(DEN1)=1.198 ;EX(EL1)=7.267E-04 EX(ENUT)=3.3E-04 ************************************************************ Group 21. Print-out of Variables ************************************************************ Group 22. Monitor Print-Out IXMON = 1 ;IYMON = 10 ;IZMON = 75 NPRMON = 100000 NPRMNT = 1 TSTSWP = -1 ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ISWPRF = 1 ;ISWPRL = 100000 No PATCHes used for this Group ************************************************************ Group 24. Dumps For Restarts GVIEW(P,1.,0.,0.) GVIEW(UP,0.,0.,-1.) GVIEW(NEARPLANE,1.524E-03) GVIEW(VDIS,0.41468) GVIEW(CENTRE,3.014993E-04,5.254888E-03,0.48186) > DOM, SIZE, 1.000000E-01, 6.350000E-03, 1.020000E+00 > DOM, MONIT, 5.000000E-02, 5.799891E-03, 9.498749E-01 > DOM, SCALE, 1.000000E+01, 1.000000E+01, 1.000000E+00 > DOM, INCREMENT, 1.000000E-02, 1.000000E-02, 1.000000E-02 > GRID, AUTO, T F F > GRID, RSET_X_1, 1, 1.000000E+00 > GRID, RSET_Y_1, 10, 1.150000E+00,G > GRID, RSET_Z_1, 80, 1.000000E+00 > DOM, INI_AMB, YES > DOM, INI_BUOY, YES > OBJ, NAME, WALLN > OBJ, POSITION, 0.000000E+00, AT_END, 0.000000E+00 > OBJ, SIZE, TO_END, 0.000000E+00, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, polcu10 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, INL > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, TO_END, TO_END, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, polcu5t > OBJ, TYPE, INLET > OBJ, PRESSURE, P_AMBIENT > OBJ, VELOCITY, 0. ,0. ,11.85 > OBJ, INLET_C6, 1. > OBJ, INLET_C7, 1. > OBJ, INLET_C8, 1. > OBJ, INLET_C9, 1. > OBJ, INLET_C10, 1. > OBJ, INLET_C11, 1. > OBJ, INLET_C12, 1. > OBJ, INLET_C13, 1. > OBJ, INLET_C14, 1. > OBJ, INLET_C15, 1. > OBJ, INLET_C16, 1. > OBJ, INLET_C17, 1. > OBJ, INLET_C18, 1. > OBJ, INLET_C19, 1. > OBJ, INLET_C20, 1. > OBJ, INLET_C21, 1. > OBJ, INLET_C22, 1. > OBJ, INLET_C23, 1. > OBJ, TURB-INTENS, 5. > OBJ, NAME, OUT > OBJ, POSITION, 0.000000E+00, 0.000000E+00, AT_END > OBJ, SIZE, TO_END, TO_END, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, polcubet > OBJ, TYPE, OPENING > OBJ, PRESSURE, P_AMBIENT > OBJ, COEFFICIENT, 1000. > OBJ, TURBULENCE, SAME , SAME STOP kk=10 ** set deposition boundary conditions for additional aerosol phases DO ii=npart+1,nptot + kk=kk+1 + COVAL(PW1,C:kk:, GRND3 ,0. ) ENDDO