TALK=T;RUN( 1, 1) ************************************************************ Q1 created by VDI menu, Version 2018, Date 17/01/18 CPVNAM=VDI; SPPNAM=FLAIR ************************************************************ Echo DISPLAY / USE settings DISPLAY Library Case I403: Deposition, horizontal duct @ 5.3m/s The case considered is 3d steady, isothermal, turbulent air flow in a horizontal square ventilation duct with the transport and deposition of particles. The Eulerian drift flux model is used to simulate particles with deposition by means of the 3-layer deposition model of Chen & Lai (2004), which accounts for deposition by gravity, Brownian diffusion and turbophoresis. This case has been studied experimentally by Sippola and Nazaroff (2004), who for fully-developed flow, measured deposition rates of particles to the walls of the duct with nominal sizes ranging from 1 to 16 microns in a 0.152m square duct at each of three nominal air speeds: 2.2m/s, 5.3m/s, 9m/s, corresponding to Reynolds numbers of 21,957, 53,894 & 87,733. This particular Q1 file employs the highest air speed of 5.3m/s at a temperature of 23degC so as to replicate Runs 7 to 11 of the experimental series, which consider deposition of 5 different particle sizes onto the four walls of the duct in the fully-developed region of the flow. ENDDIS PHOTON USE p up x view y con C6 y 1 fi;.1;pa vec y 1;pa ENDUSE ************************************************************ IRUNN = 1 ;LIBREF = 0 ************************************************************ Group 1. Run Title TEXT(I403: Deposition, horizontal [email protected]/s) ************************************************************ Echo save-block settings for Group 1 save1begin Five different mono-sized aerosol particles with differing densities enter the horizontal duct with supply air at 5.3m/s and 23degC. The duct is 20 hydraulic diameters long, at which location the flow is essentially fully developed. In the simulations the particle concentration is normalized by the inlet concentration. The flow is symmetric about the duct centre, but this isn't exploited in the simulations. The case has been studied numerically by Zhao and Wu (2006). This particular Q1 file simulates the intermediate air speed case so as to replicate Runs 7 to 11 of the experimental series, which have the following aerosol characteristics: Run diameter density Tr+ Vd+ Tr+ Vd+ (microns) (kg/m^3) measured predicted 7 1.0 1400 0.022 2.0E-4 0.024 1.849E-4 8 3.1 1200 0.16 1.5E-3 0.175 1.638E-3 9 5.2 1200 0.48 7.9E-3 0.481 6.377E-3 10 9.8 1000 1.5 0.017 1.403 0.0453 11 16.0 1000 3.6 0.069 3.716 0.1895 where Tr+ (=Tr*Ust^2/enul_g) is the dimensional particle relaxation time, Vd+ (=Vd/Ust)is the dimensionless deposition velocity, enul_g is the kinematic laminar viscosity, Ust (=0.27m/s) is the friction velocity, Tr (=rho_p*diam_p^2*C/(18.*rho_g*enul_g) is the particle relaxation time and C is the Cunningham slip coefficient. References ---------- Sippola, M.R. & Nazaroff,W.W., "Experiments Measuring Particle Deposition from Fully Developed Turbulent Flow in Ventilation Ducts", Aerosol Science & Technology, Vol.38, pp914–925, (2004) Sippola, M.R., "Particle Deposition in Ventilation Ducts", PhD Thesis, Civil and Environmental Engineering, University of California, Berkeley, (2002). Zhao, B. & Wu, J., "Modelling particle deposition from fully developed flow in ventilation duct", J. Atmospheric Environment, Vol.40, p457-466, (2006). Chen, F.Z. & Lai, A.C.K, "An Eulerian model for particle deposition under electrostatic and turbulent conditions", J.Aerosol Science, Vol.35, p47-62, (2004). save1end ************************************************************ Group 2. Transience STEADY = T ************************************************************ Groups 3, 4, 5 Grid Information * Overall number of cells, RSET(M,NX,NY,NZ,tolerance) RSET(M,60,30,30) ************************************************************ Group 6. Body-Fitted coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd * Non-default variable names NAME(106)=ENUN ;NAME(107)=DI5 NAME(108)=DI4 ;NAME(109)=DI3 NAME(110)=DI2 ;NAME(111)=VP5 NAME(112)=TP5 ;NAME(113)=VP4 NAME(114)=TP4 ;NAME(115)=VP3 NAME(116)=TP3 ;NAME(117)=VP2 NAME(118)=TP2 ;NAME(119)=VS5 NAME(120)=TR5 ;NAME(121)=VD5 NAME(122)=DEP5 ;NAME(123)=VS4 NAME(124)=TR4 ;NAME(125)=VD4 NAME(126)=DEP4 ;NAME(127)=VS3 NAME(128)=TR3 ;NAME(129)=VP1 NAME(130)=TP1 ;NAME(131)=DI1 NAME(132)=VS1 ;NAME(133)=TR1 NAME(134)=VD1 ;NAME(135)=VD3 NAME(136)=VSTR ;NAME(137)=DEP1 NAME(138)=DEP3 ;NAME(139)=VS2 NAME(140)=ENUL ;NAME(141)=TR2 NAME(142)=VD2 ;NAME(143)=DEP2 NAME(145)=YPLS ;NAME(146)=STRS NAME(147)=EPKE ;NAME(148)=DEN1 NAME(149)=EL1 ;NAME(150)=ENUT * Solved variables list SOLVE(P1,U1,V1,W1,C6,C7,C8,C9) SOLVE(C10) * Stored variables list STORE(ENUT,EL1,DEN1,EPKE,STRS,YPLS,DEP2,VD2) STORE(TR2,ENUL,VS2,DEP3,DEP1,VSTR,VD3,VD1) STORE(TR1,VS1,DI1,TP1,VP1,TR3,VS3,DEP4) STORE(VD4,TR4,VS4,DEP5,VD5,TR5,VS5,TP2) STORE(VP2,TP3,VP3,TP4,VP4,TP5,VP5,DI2) STORE(DI3,DI4,DI5,ENUN) * Additional solver options SOLUTN(P1,Y,Y,Y,N,N,Y) SOLUTN(C6,Y,Y,Y,N,N,Y) SOLUTN(C7,Y,Y,Y,N,N,Y) SOLUTN(C8,Y,Y,Y,N,N,Y) SOLUTN(C9,Y,Y,Y,N,N,Y) SOLUTN(C10,Y,Y,Y,N,N,Y) TURMOD(KEMODL) ************************************************************ Echo save-block settings for Group 7 save7begin (stored of ENUN is ENUT/(0.152*0.43)) save7end ************************************************************ Group 8. Terms & Devices NEWRH1 = T NEWENL = T ************************************************************ Group 9. Properties PRESS0 =1.01325E+05 ;TEMP0 =273. * Domain material index is 2 signifying: * Air using Ideal Gas Law, STP SETPRPS(1, 2) ENUL = GRND6 ENULA =1.46E-06 ;ENULB =110. ENULC =8.0974E-11 TMP1 = GRND1 TMP1A =23. ;TMP1B =0. TMP1C =0. DRH1DP = GRND5 DVO1DT =3.33E-03 PRT(EP)=1.314 ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initialise Var/Porosity Fields FIINIT(P1)=0. ;FIINIT(U1)=5.3 FIINIT(C6)=0. ;FIINIT(C7)=0. FIINIT(C8)=0. ;FIINIT(C9)=0. FIINIT(C10)=0. No PATCHes used for this Group INIADD = F ************************************************************ Group 12. Convection and diffusion adjustments No PATCHes used for this Group ************************************************************ Group 13. Boundary & Special Sources PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(DFLUX, C6, GRND4, GRND4) COVAL(DFLUX, C7, GRND4, GRND4) COVAL(DFLUX, C8, GRND4, GRND4) COVAL(DFLUX, C9, GRND4, GRND4) COVAL(DFLUX, C10, GRND4, GRND4) BUOYA =0. ; BUOYB =0. BUOYC =-9.81 EGWF = T ************************************************************ Echo save-block settings for Group 13 save13begin ** estimate for turbulent inlet intensity for fully developed duct flow real(din,win,tint,kein,epin,mixl,fric,temk) real(reyn,ust,tvis,tvisn,enugas,rhogas) temk=23.0+temp0 din=0.152 win=5.3 rhogas=press0/(287.0*temk) rhogas enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas enugas reyn=win*din/enugas reyn fric=1./(1.82*log10(reyn)-1.64)**2 fric ust=win*(fric/8.)**0.5 ust kein=fric*win*win/4. mixl=0.09*0.5*din mixl epin=0.1643*kein**1.5/mixl kein epin tint=kein**0.5/win tint tvis=0.09*kein*kein/epin tvis tvisn=tvis/(ust*din) tvisn real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl) integer(npart);npart=5 ** Particle diameter & density array(pdia,real,npart) array(pden,real,npart) pdia(1)=1.0;pdia(2)=3.1;pdia(3)=5.2 pdia(4)=9.8;pdia(5)=16.0 pden(1)=1400.0;pden(2)=1200.0;pden(3)=1200.0 pden(4)=1000.0;pden(5)=1000.0 do ii=1,npart dpart=pdia(ii)*1.e-6 rho_p=pden(ii) ** Stokes-flow slip velocity grava=9.81 vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas) rey=vslip*dpart/enugas ii vdep=vslip vslip rey tpart=rho_p*dpart**2/(18.*rhogas*enugas) tpart tpl=tpart*ust*ust/enugas tpl enddo ** print to the "inforout" file the floor deposition results in the fully-developed flow region. integer(ixp,iyp) ixp=nx iyp=ny/2 (make1 vs_nx is 0) (store1 vs_nx is VSTR[:ixp:,:iyp:,1]) (print V* is vs_nx) (make1 yp_nx is 0) (store1 yp_nx is YPLS[:ixp:,:iyp:,1]) (print y+ is yp_nx) do jj=1,npart (make1 tr_:jj: is 0) (store1 tr_:jj: is TR:jj:[:ixp:,:iyp:,1]) (print Tr_:jj: is tr_:jj:) (make1 vd_:jj: is 0) (store1 vd_:jj: is VD:jj:[:ixp:,:iyp:,1]) (print Vd_:jj: is vd_:jj:) (make1 tp_:jj: is 0) (store1 tp_:jj: is TP:jj:[:ixp:,:iyp:,1]) (print Tr+_:jj: is tp_:jj:) (make1 vp_:jj: is 0) (store1 vp_:jj: is VP:jj:[:ixp:,:iyp:,1]) (print Vd+_:jj: is vp_:jj:) enddo save13end ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 500 RESFAC =1.0E-05 ************************************************************ Group 16. Terminate Iterations LITER(P1)=200 ************************************************************ Group 17. Relaxation RELAX(P1 ,LINRLX,1. ) RELAX(KE ,LINRLX,0.5 ) RELAX(EP ,LINRLX,0.5 ) RELAX(C6 ,LINRLX,0.5 ) RELAX(C7 ,LINRLX,0.5 ) RELAX(C8 ,LINRLX,0.5 ) RELAX(C9 ,LINRLX,0.5 ) RELAX(C10 ,LINRLX,0.5 ) KELIN = 3 ************************************************************ Group 18. Limits VARMAX(C6)=1. ;VARMIN(C6)=0. VARMAX(C7)=1. ;VARMIN(C7)=0. VARMAX(C8)=1. ;VARMIN(C8)=0. VARMAX(C9)=1. ;VARMIN(C9)=0. VARMAX(C10)=1. ;VARMIN(C10)=0. ************************************************************ Group 19. EARTH Calls To GROUND Station NAMGRD =FLAR GENK = T PARSOL = F ISG62 = 0 SPEDAT(SET,DFLUX,DFMODL,L,T) SPEDAT(SET,OUTPUT,NOFIELD,L,T) SPEDAT(SET,DFLUX,DEPOMOD,I,3) SPEDAT(SET,DFLUX,DENP1,R,1400.) SPEDAT(SET,DFLUX,DIAP1,R,1.0E-06) SPEDAT(SET,DFLUX,DENP2,R,1200.) SPEDAT(SET,DFLUX,DIAP2,R,3.1E-06) SPEDAT(SET,DFLUX,DENP3,R,1200.) SPEDAT(SET,DFLUX,DIAP3,R,5.2E-06) SPEDAT(SET,DFLUX,DENP4,R,1000.) SPEDAT(SET,DFLUX,DIAP4,R,9.8E-06) SPEDAT(SET,DFLUX,DENP5,R,1000.) SPEDAT(SET,DFLUX,DIAP5,R,1.6E-05) SPEDAT(SET,GXMONI,PLOTALL,L,T) ************************************************************ Group 20. Preliminary Printout DISTIL = T ;NULLPR = F NDST = 0 DSTTOL =1.0E-02 EX(P1)=3.43 ;EX(U1)=5.122 EX(V1)=4.131E-03 ;EX(W1)=4.132E-03 EX(KE)=0.1288 ;EX(EP)=5.773 EX(C6)=0.9999 ;EX(C7)=0.9996 EX(C8)=0.999 ;EX(C9)=0.9978 EX(C10)=0.9735 ;EX(ENUN)=0.01123 EX(DI5)=4515. ;EX(DI4)=1.07E+04 EX(DI3)=2.002E+04 ;EX(DI2)=2.009E+04 EX(VP5)=1.016E-03 ;EX(TP5)=0.4688 EX(VP4)=3.837E-04 ;EX(TP4)=0.177 EX(VP3)=1.317E-04 ;EX(TP3)=0.06069 EX(VP2)=4.805E-05 ;EX(TP2)=0.02202 EX(VS5)=7.688E-03 ;EX(TR5)=7.837E-04 EX(VD5)=2.569E-04 ;EX(DEP5)=3.063E-04 EX(VS4)=2.903E-03 ;EX(TR4)=2.959E-04 EX(VD4)=9.7E-05 ;EX(DEP4)=1.157E-04 EX(VS3)=9.955E-04 ;EX(TR3)=1.015E-04 EX(VP1)=6.963E-06 ;EX(TP1)=2.959E-03 EX(DI1)=1.201E+04 ;EX(VS1)=4.816E-05 EX(TR1)=4.909E-06 ;EX(VD1)=1.806E-06 EX(VD3)=3.33E-05 ;EX(VSTR)=0.03374 EX(DEP1)=2.155E-06 ;EX(DEP3)=3.972E-05 EX(VS2)=3.584E-04 ;EX(ENUL)=1.563E-05 EX(TR2)=3.653E-05 ;EX(VD2)=1.217E-05 EX(DEP2)=1.438E-05 ;EX(YPLS)=3.917 EX(STRS)=9.183E-03 ;EX(EPKE)=28.889999 EX(DEN1)=1.181 ;EX(EL1)=4.675E-03 EX(ENUT)=7.338E-04 EX(C9 )=9.675E-01 EX(C10 )=9.097E-01 EX(DI5 )=6.786E+01 EX(DI4 )=1.212E+03 EX(DI3 )=5.772E+03 EX(DI2 )=3.673E+09 EX(VP5 )=6.433E-03 EX(VP4 )=1.509E-03 EX(VP3 )=2.169E-04 EX(VP2 )=5.702E-05 EX(VD5 )=1.725E-03 EX(DEP5)=1.011E-03 EX(VD4 )=4.076E-04 EX(DEP4)=3.803E-04 EX(VP1 )=7.165E-06 EX(DI1 )=4.563E+10 EX(VD1 )=1.849E-06 EX(VD3 )=5.692E-05 EX(DEP1)=2.206E-06 EX(DEP3)=6.647E-05 EX(VD2 )=1.477E-05 EX(DEP2)=1.758E-05 ************************************************************ Group 21. Print-out of Variables OUTPUT(YPLS,Y,N,Y,N,Y,Y) OUTPUT(STRS,Y,N,Y,N,Y,Y) ************************************************************ Group 22. Monitor Print-Out IXMON = 42 ;IYMON = 15 ;IZMON = 1 NPRMON = 100000 NPRMNT = 1 TSTSWP = -1 ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 XZPR = T ISWPRF = 1 ;ISWPRL = 100000 No PATCHes used for this Group ************************************************************ Group 24. Dumps For Restarts GVIEW(P,0.462061,-0.680528,0.568666) GVIEW(UP,-0.141691,0.576336,0.804836) GVIEW(WINDOW,1022,726) GVIEW(DEPTH,3.0E+04) GVIEW(VDIS,1.506729) GVIEW(CENTRE,1.52,0.076,0.076) > DOM, SIZE, 3.040000E+00, 1.520000E-01, 1.520000E-01 > DOM, MONIT, 2.102666E+00, 7.251333E-02, 1.761008E-03 > DOM, SCALE, 1.000000E+00, 1.000000E+00, 1.000000E+00 > DOM, INCREMENT, 1.000000E-02, 1.000000E-02, 1.000000E-02 > GRID, RSET_X_1, 60, 1.000000E+00 > GRID, RSET_Y_1, -30, 1.050000E+00,G > GRID, RSET_Z_1, -30, 1.050000E+00,G > DOM, T_AMBIENT, 2.300000E+01 > DOM, INI_AMB, YES > DOM, INI_BUOY, YES > OBJ, NAME, INL > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 0.000000E+00, TO_END, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube3t > OBJ, VISIBLE, NO > OBJ, TYPE, INLET > OBJ, PRESSURE, P_AMBIENT > OBJ, VELOCITY, 5.3 ,0. ,0. > OBJ, INLET_C6, 1. > OBJ, INLET_C7, 1. > OBJ, INLET_C8, 1. > OBJ, INLET_C9, 1. > OBJ, INLET_C10, 1. > OBJ, TURB-INTENS, 6.8 > OBJ, NAME, OUTL > OBJ, POSITION, AT_END, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 0.000000E+00, TO_END, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube12t > OBJ, VISIBLE, NO > OBJ, TYPE, OPENING > OBJ, PRESSURE, P_AMBIENT > OBJ, COEFFICIENT, 1000. > OBJ, TURBULENCE, SAME , SAME > OBJ, NAME, HWAL > OBJ, POSITION, 0.000000E+00, 0.000000E+00, AT_END > OBJ, SIZE, TO_END, TO_END, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, SWAL > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, TO_END, 0.000000E+00, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, NWAL > OBJ, POSITION, 0.000000E+00, AT_END, 0.000000E+00 > OBJ, SIZE, TO_END, 0.000000E+00, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, LWAL > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, TO_END, TO_END, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE STOP