TALK=T;RUN( 1, 1) ************************************************************ Q1 created by VDI menu, Version 2018, Date 25/01/18 CPVNAM=VDI; SPPNAM=FLAIR ************************************************************ Echo DISPLAY / USE settings DISPLAY Library Case I401: Aerosol deposition in a model room The case considered is steady, isothermal airflow with aerosol transport and deposition of 10 micron particles in a laboratory- scale room environment. The Eulerian drift flux model is used to simulate aerosol transport with surface deposition via the 3-layer deposition model of Chen & Lai (2004), which accounts for the deposition mechanisms of gravity, Brownian & turbulent diffusion. This case has been studied experimentally and numerically by Chen et al (2006), Lai & Chen(2006, 2007),Zhao & Wu (2007), Gao & Niu (2007), Zhao et al(2008) and Xu & Wang(2017). Particles mainly deposit on the floor, and the model predicts a floor deposition fraction of 69%, which compares favourably with the range of values(60 to 80%) reported by Lai & Chen (2206, 2007) using both Eulerian and Lagrangian CFD models. ENDDIS PHOTON USE p up x view y con C6 y 1 fi;.1;pa vec y 1;pa ENDUSE ************************************************************ IRUNN = 1 ;LIBREF = 0 ************************************************************ Group 1. Run Title TEXT(I401: Aerosol deposition in a model room) ************************************************************ Echo save-block settings for Group 1 save1begin Mono-sized 10 micron aerosol particles with a density of 1400 kg/m^3 enter the room with supply air at a Reynolds number of 560. The flow is isothermal with a temperature of 27degC. In the simulations the particle concentration is normalized by its inlet value. The model room is 0.8m long(z),0.4m wide(y) by 0.4 high(x), and the air is supplied at ceiling level at z=0, and then exhausted at floor level at z=0.8m. The inlet and outlet to the room are both 0.04m square and located centrally in the y direction. In the experiments, two inlet velocities of 0.225 and 0.45m/s were considered, corresponding to hourly air exchange rates of 10 and 20, respectively. The simulation uses the lower inflow rate of 0.225m/s and exploits symmetry about the centre plane at y=2m. The low inlet Reynolds number suggests laminar inflow in the absence of any turbulence-promoting devices upstream, but presumably turbulence was generated in the experiments. References ---------- Chen, F.Z. & Lai, A.C.K, "An Eulerian model for particle deposition under electrostatic and turbulent conditions", J.Aerosol Science, Vol.35, p47-62, (2004). Chen, F.Z., Yu, S.C.M., Lai, A.C.K.,"Modeling particle distribution and deposition in indoor environments with a new drift-flux model", Atmospheric Environment 40, 357�367, (2006). Lai, A.C.K., Chen, F.Z.,"Modeling particle deposition and distribution in a chamber with a two-equation Reynolds- averaged Navier�Stokes model",Aerosol Science 37, 1770�1780, (2006). Lai, A.C.K., Chen, F.Z., "Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors", Atmospheric Environment 41, 5249�5256, (2007). Zhao, B., Wu, J. "Particle deposition in indoor environments: Analysis of influencing factors", Journal of Hazardous Materials, Vol. 147, Issues 1�2, page 439-448,(2007). Gao, N.P., Niu, J.L., "Modeling particle dispersion and deposition in indoor environments", Atmospheric Environment 41, 3862-3876, (2007) Zhao, B., C Yang, C., Yang, X.,Liu, S.,"Particle dispersion and deposition in ventilated rooms: testing and evaluation of different Eulerian and Lagrangian models", Building and Environment 43 (4), 388-397, (2008). Xu, G., Wang, J.,"CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room", Atmospheric Environment 166, 300-314, (2017). save1end ************************************************************ Group 2. Transience STEADY = T ************************************************************ Groups 3, 4, 5 Grid Information * Overall number of cells, RSET(M,NX,NY,NZ,tolerance) RSET(M,44,30,60) ************************************************************ Group 6. Body-Fitted coordinates ************************************************************ Group 7. Variables: STOREd,SOLVEd,NAMEd * Non-default variable names NAME(131)=VS1 ;NAME(132)=VDPH NAME(133)=DI1 ;NAME(134)=VP1 NAME(135)=VSTR ;NAME(136)=TP1 NAME(137)=TR1 ;NAME(139)=VABS NAME(140)=YPLS ;NAME(141)=VD1 NAME(142)=STRS ;NAME(143)=DEP1 NAME(144)=ENUL ;NAME(145)=SPH1 NAME(147)=EPKE ;NAME(148)=DEN1 NAME(149)=EL1 ;NAME(150)=ENUT * Solved variables list SOLVE(P1,U1,V1,W1,C6) * Stored variables list STORE(ENUT,EL1,DEN1,EPKE,SPH1,ENUL,DEP1,STRS) STORE(VD1,YPLS,VABS,TR1,TP1,VSTR,VP1,DI1) STORE(VDPH,VS1) * Additional solver options SOLUTN(P1,Y,Y,Y,N,N,Y) SOLUTN(C6,Y,Y,Y,N,N,Y) TURMOD(KERNG) ************************************************************ Group 8. Terms & Devices NEWRH1 = T NEWENL = T ************************************************************ Group 9. Properties PRESS0 =1.01325E+05 ;TEMP0 =273. * Domain material index is 2 signifying: * Air using Ideal Gas Law, STP SETPRPS(1, 2) ENUL = GRND6 ENULA =1.46E-06 ;ENULB =110. ENULC =8.0974E-11 TMP1 = GRND1 TMP1A =27. ;TMP1B =0. TMP1C =0. DRH1DP = GRND5 DVO1DT =3.33E-03 PRNDTL(C6)=0.7 PRT(KE)=0.7194 ;PRT(EP)=0.7194 ************************************************************ Group 10.Inter-Phase Transfer Processes ************************************************************ Group 11.Initialise Var/Porosity Fields FIINIT(P1)=0. ;FIINIT(W1)=0.225 FIINIT(C6)=0. No PATCHes used for this Group INIADD = F NAMFI ='phida' ************************************************************ Group 12. Convection and diffusion adjustments No PATCHes used for this Group ************************************************************ Group 13. Boundary & Special Sources PATCH(DFLUX, CELL, 0, 0, 0, 0, 0, 0, 1, 1) COVAL(DFLUX, C6, GRND4, GRND4) BUOYA =-9.81 ; BUOYB =0. BUOYC =0. EGWF = T ************************************************************ Echo save-block settings for Group 13 save13begin ** estimate for turbulent inlet intensity for fully developed duct flow real(din,win,tint,kein,epin,mixl,fric,reyn) real(tvis,tvisn,ust,enugas,rhogas,temk) temk=27.0+temp0 rhogas=press0/(287.0*temk) rhogas enugas=1.46e-6*temk**1.5/(110.+temk)/rhogas enugas enugas=1.609e-5;rhogas=1.1768 din=0.04;win=0.225 reyn=win*din/enugas reyn fric=1./(1.82*log10(reyn)-1.64)**2 fric ust=win*(fric/8.)**0.5 ust kein=fric*win*win/4. mixl=0.09*0.5*din epin=0.1643*kein**1.5/mixl kein epin tint=kein**0.5/win tint tvis=0.09*kein*kein/epin tvis tvisn=tvis/(ust*din) tvisn ** inlet turbulent intensity for specified intensity tint=0.3 tint kein=(tint*win)**2 kein epin=0.1643*kein**1.5/mixl epin tvis=0.09*kein*kein/epin tvis tvisn=tvis/(ust*din) tvisn real(vslip,rho_p,dpart,grava,vdep,rey,tpart,tpl) ** estimate of slip velocity & particle Reynolds number dpart=10.e-6 ; rho_p=1.4e3 grava=9.81 vslip=rho_p*dpart*dpart*grava/(18.*rhogas*enugas) rey=vslip*dpart/enugas vslip rey tpart=rho_p*dpart**2/(18.*rhogas*enugas) tpart tpl=tpart*ust*ust/enugas tpl ** deposition velocity in m/hr (STORED of VDPH is VD1*3600.0) ** compute particle deposition fraction (MAKE1 PDFRAC is 0.0) (STORE1 PDFRAC is 1.-ABS(NETS(C6,OUT))/NETS(C6,INL)) (PRINT Part_dep_fract is PDFRAC) ** compute average floor deposition velocity in m/hr (make1 SUMAF is 0.0) (make1 SUMVD is 0.0) (make1 SUMTP is 0.0) (make1 SUMVP is 0.0) (make1 SUMC6 is 0.0) (store1 SUMAF at PBOT is SUM(AEAST)) (store1 SUMVD at PBOT is SUM(VD1*3600.*AEAST)) (store1 SUMTP at PBOT is SUM(TP1*AEAST)) (store1 SUMVP at PBOT is SUM(VP1*AEAST)) (store1 SUMC6 at PBOT is SUM(C6*AEAST)) (print Floor_avg_Vdep is SUMVD/SUMAF) (print Floor_avg_C6 is SUMC6/SUMAF) (print Floor_avg_T+ is SUMTP/SUMAF) (print Floor_avg_Vd+ is SUMVP/SUMAF) (print Floor_area is SUMAF) save13end ************************************************************ Group 14. Downstream Pressure For PARAB ************************************************************ Group 15. Terminate Sweeps LSWEEP = 700 RESFAC =1.0E-04 ************************************************************ Group 16. Terminate Iterations LITER(KE)=10 ;LITER(EP)=10 ************************************************************ Group 17. Relaxation RELAX(P1 ,LINRLX,1. ) RELAX(KE ,LINRLX,0.5 ) RELAX(EP ,LINRLX,0.5 ) RELAX(C6 ,FALSDT,10. ) KELIN = 3 ************************************************************ Group 18. Limits VARMAX(C6)=1. ;VARMIN(C6)=0. ************************************************************ Group 19. EARTH Calls To GROUND Station NAMGRD =FLAR GENK = T PARSOL = F IENUTA = 1 ISG62 = 1 SPEDAT(SET,DFLUX,CONSLP,L,F) SPEDAT(SET,DFLUX,JWDEP,I,2) SPEDAT(SET,OUTPUT,NOFIELD,L,T) SPEDAT(SET,DFLUX,DFMODL,L,T) SPEDAT(SET,DFLUX,DEPOMOD,I,4) SPEDAT(SET,DFLUX,DENP1,R,1400.) SPEDAT(SET,DFLUX,DIAP1,R,1.0E-05) SPEDAT(SET,GXMONI,PLOTALL,L,T) ************************************************************ Group 20. Preliminary Printout DISTIL = T ;NULLPR = F NDST = 0 DSTTOL =1.0E-02 EX(P1)=0.01584 ;EX(U1)=5.68E-03 EX(V1)=2.622E-03 ;EX(W1)=0.01283 EX(KE)=1.327E-04 ;EX(EP)=1.108E-04 EX(C6)=0.1623 ;EX(VS1)=4.189E-03 EX(VDPH)=0.3427 ;EX(DI1)=4.838E+04 EX(VP1)=0.05074 ;EX(VSTR)=5.148E-04 EX(TP1)=1.072E-04 ;EX(TR1)=4.27E-04 EX(VABS)=0.01641 ;EX(YPLS)=0.1192 EX(VD1)=9.519E-05 ;EX(STRS)=3.946E-06 EX(DEP1)=2.104E-05 ;EX(ENUL)=1.572E-05 EX(SPH1)=1004. ;EX(EPKE)=0.3084 EX(DEN1)=1.177 ;EX(EL1)=9.338E-03 EX(ENUT)=4.638E-05 ************************************************************ Group 21. Print-out of Variables ************************************************************ Group 22. Monitor Print-Out IXMON = 4 ;IYMON = 2 ;IZMON = 52 NPRMON = 100000 NPRMNT = 1 TSTSWP = -1 ************************************************************ Group 23.Field Print-Out & Plot Control NPRINT = 100000 ISWPRF = 1 ;ISWPRL = 100000 No PATCHes used for this Group ************************************************************ Group 24. Dumps For Restarts IDISPA = 2000 ;IDISPB = 0 ;IDISPC = 0 CSG1 ='SW' GVIEW(P,4.940031E-03,0.999783,-0.02024) GVIEW(UP,0.999986,-4.899642E-03,2.044586E-03) GVIEW(WINDOW,1022,726) GVIEW(DEPTH,3.0E+04) GVIEW(VDIS,0.480721) GVIEW(CENTRE,0.2,0.1,0.4) > DOM, SIZE, 4.000000E-01, 2.000000E-01, 8.000000E-01 > DOM, MONIT, 2.369687E-02, 8.343028E-03, 7.095959E-01 > DOM, SCALE, 1.000000E+00, 1.000000E+00, 1.000000E+00 > DOM, INCREMENT, 1.000000E-02, 1.000000E-02, 1.000000E-02 > GRID, MINCELL, 0.034674 ,0.018621 ,4.570882E-03 > GRID, RSET_X_1, -3, 1.100000E+00,G > GRID, RSET_X_2, -5, 1.100000E+00,G > GRID, RSET_X_3, -28, 1.030000E+00,G > GRID, RSET_X_4, -5, 1.100000E+00,G > GRID, RSET_X_5, -3, 1.100000E+00,G > GRID, RSET_Y_1, 4,-1.100000E+00,G > GRID, RSET_Y_2, -26, 1.040000E+00,G > GRID, RSET_Z_1, -60, 1.020000E+00,G > DOM, T_AMBIENT, 2.700000E+01 > DOM, INI_AMB, YES > DOM, INI_BUOY, YES > OBJ, NAME, INL > OBJ, POSITION, 3.400000E-01, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 4.000000E-02, 2.000000E-02, 0.000000E+00 > OBJ, GEOMETRY, cube3t > OBJ, TYPE, INLET > OBJ, PRESSURE, P_AMBIENT > OBJ, VELOCITY, 0. ,0. ,0.225 > OBJ, INLET_C6, 1. > OBJ, KE_IN, 4.556000E-03 > OBJ, EP_IN, 2.807200E-02 > OBJ, NAME, OUT > OBJ, POSITION, 2.000000E-02, 0.000000E+00, AT_END > OBJ, SIZE, 4.000000E-02, 2.000000E-02, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube12t > OBJ, TYPE, OPENING > OBJ, PRESSURE, P_AMBIENT > OBJ, COEFFICIENT, 1000. > OBJ, VELOCITY, SAME , SAME , SAME > OBJ, TURBULENCE, SAME , SAME > OBJ, NAME, NW > OBJ, POSITION, 0.000000E+00, AT_END, 0.000000E+00 > OBJ, SIZE, TO_END, 0.000000E+00, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, LW1 > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 3.400000E-01, 2.000000E-01, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, LW2 > OBJ, POSITION, 3.400000E-01, AT_END, 0.000000E+00 > OBJ, SIZE, 4.000000E-02, 1.800000E-01, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, COLOR-MODE, USER > OBJ, COLOR-VAL, 80 > OBJ, NAME, LW3 > OBJ, POSITION, AT_END, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 2.000000E-02, 2.000000E-01, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, HW1 > OBJ, POSITION, 0.000000E+00, 0.000000E+00, AT_END > OBJ, SIZE, 2.000000E-02, 2.000000E-01, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, HW2 > OBJ, POSITION, 2.000000E-02, AT_END, AT_END > OBJ, SIZE, 4.000000E-02, 1.800000E-01, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, HW3 > OBJ, POSITION, AT_END, 0.000000E+00, AT_END > OBJ, SIZE, 3.400000E-01, 2.000000E-01, 0.000000E+00 > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, TOP > OBJ, POSITION, AT_END, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 0.000000E+00, TO_END, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, NAME, PBOT > OBJ, POSITION, 0.000000E+00, 0.000000E+00, 0.000000E+00 > OBJ, SIZE, 0.000000E+00, TO_END, TO_END > OBJ, DOMCLIP, NO > OBJ, GEOMETRY, cube11 > OBJ, VISIBLE, NO > OBJ, TYPE, PLATE > OBJ, ROUGH, 0. > OBJ, WALL_CO, LOG-LAW STOP