PHOTON USE AUTOPLOT file phi 5 da 1 u1 screen msg gas velocity pl 1 msg pressto continue pause cl da 1 u2 screen msg particle velocity pl 1 msg press to continue pause cl da 1 r1 screen msg gas volume fraction pl 1 msg press to continue pause cl da 1 c1 screen msg concentration of contaminant pl 1 msg press to continue pause cl da 1 p1 screen msg pressure pl 1 msg press e to END enduse GROUP 1. Run title and other preliminaries TEXT(2 PHASE DEMO - DP = 1.0E-4 : W577 TITLE **************************************************************** This Q1 demonstrates the use of the additional features provided in GXFIP and GXCINT. These are: GXFIP: This provides all the normal CFIPS formulae, as well as a drag law for spherical particles. This is activated by CFIPS = GRND7. CFIPA is then the minimum slip velocity, and CFIPB the particle diameter. If the shadow volume fraction, RS, is SOLVEd, CFIPB is the nominal diameter. GXCINT:This provides two heat/concentration transfer coefficient formulations based on local Nusselt Numbers. These are activated by CINT(phi) = GRND7/GRND8. The coding checks for PHINT(h1)= Cp1/Cp2;PHINT(h2)=default, and multiplies the transfer coefficients by the appropriate specific heat ratios. **************************************************************** DISPLAY The case considered represents a cool gas (phase 1), carrying a stream of faster, hotter particles. The gas also has a concentration of a contaminant, C1, which diffuses into the particles, C2. The densities and specific heats of the phases are different. The heat and concentration transfer coefficients are based on local Nusselt Numbers. Heat transfer is driven by interphase temperature difference, hence PHINT(h1) is set to the ratio of specific heats, and PHINT(h2) is left at the default. The drag law for spheres is used. ENDDIS **************************************************************** The main parameters specifying the problem are: uin1,uin2 - phase 1 and phase 2 inlet velocity r1in,r2in - phase 1 and phase 2 inlet volume fraction t1in,t2in - phase 1 and phase 2 inlet temperature c1in,c2in - phase 1 and phase 2 inlet concentration rho1,rho2 - phase 1 and phase 2 density cfipb - particle diameter tmp2a,tmp2b - reciprocal of phase 1 and phase 2 specific heat **************************************************************** REAL(UIN1,UIN2,R1IN,R2IN,H1IN,H2IN,T1IN,T2IN,C1IN,C2IN) GROUP 3. X-direction grid specification GRDPWR(X,10,1,1) GROUP 7. Variables stored, solved & named ONEPHS=F;SOLVE(P1,U1,U2,R1,R2,C1,C2,H1,H2) STORE(CFIP,TMP1,TMP2);STORE(NUSS,REYN,VREL,CD,APRJ) GROUP 9. Properties of the medium (or media) RHO1=1;RHO2=2000 TMP1=LINH;TMP1A=273;TMP1B=1/1000;CP1=1000 TMP2=LINH;TMP2A=273;TMP2B=1/2000;CP2=2000 GROUP 10. Inter-phase-transfer processes and properties CFIPS=GRND7;CFIPA=1E-6;STORE(SIZE) Select the particle size for each value of CASENO CFIPB=1E-4 CINT(C1)=GRND7;CINT(C2)=GRND7 CINT(H1)=GRND7;CINT(H2)=GRND7 PHINT(H1)=TMP2B/TMP1B GROUP 13. Boundary conditions and special sources UIN1=10;UIN2=20;R1IN=0.9;R2IN=1-R1IN;T1IN=300;T2IN=500 C1IN=1;C2IN=0 H1IN=(T1IN-TMP1A)/TMP1B;H2IN=(T2IN-TMP2A)/TMP2B FIINIT(R1)=R1IN;FIINIT(R2)=R2IN;FIINIT(H1)=H1IN;FIINIT(H2)=H2IN FIINIT(C1)=C1IN;FIINIT(C2)=C2IN INLET(IN,WEST,1,1,1,1,1,1,1,1) VALUE(IN,P1,RHO1*UIN1*R1IN);VALUE(IN,U1,UIN1) VALUE(IN,C1,C1IN);VALUE(IN,H1,H1IN) VALUE(IN,P2,RHO2*UIN2*R2IN);VALUE(IN,U2,UIN2) VALUE(IN,C2,C2IN);VALUE(IN,H2,H2IN) OUTLET(OUT,EAST,NX,NX,1,1,1,1,1,1) COVAL(OUT,P1,RHO1*1E6,0);COVAL(OUT,P2,RHO2*1E6,0) GROUP 15. Termination of sweeps LSWEEP=50 GROUP 17. Under-relaxation devices RELAX(R1,LINRLX,0.8);RELAX(R2,LINRLX,0.8) GROUP 21. Print-out of variables NXPRIN=1 GROUP 22. Spot-value print-out IXMON=7;TSTSWP=-1 GROUP 24. Dumps for restarts NOWIPE=F