GROUP 1. Run title and other preliminaries DISPLAY The case considered is the normal impingement of a turbulent axisymmetric jet on a heated flat plate. The flow geometry and conditions approximate to those reported experimentally by D.Cooper et al ( Int.J.Heat Mass Transfer, Vol.36, No.10, p2675,[1993] ). The jet issues into ambient fluid at a Reynolds number of 2.3E4 from a pipe located 2 pipe diameters above the electrically heated plate. The jet injection temperature is ambient so that the purpose of the flow process is to effect cooling. For the case of orthogonal impaction, the flow is axisymmetric and is directed outward along the surface giving rise to a radial wall jet. The simulation may be performed with the standard k-e model or with the Reynolds stress transport model. For the latter, the model employs differential transport equations for determining the turbulent fluxes of heat. ENDDIS The calculation performed is merely for demonstration purposes, but the test case may form the basis of a validation exercise which would require the following extensions: (a) a much finer mesh, particularly in the round jet-mixing layer, the radial wall and the thermal boundary layer; and (b) the implementation of fully-developed flow conditions at the jet discharge. Never- theless, the present computations show the correct trends in that the k-e model leads to excessive turbulence energies along the jet symmetry plane along the stagnation point. The RSTM simulation requires at least 1000 sweeps for complete convergence. The k-e simulation only requires around 300 for convergence. BOOLEAN(KEMOD,FINEG);KEMOD=F;FINEG=F IF(KEMOD) THEN + TEXT(KE_2D IMPINGING ROUND JET :T609 ELSE + TEXT(RSTM_2D IMPINGING ROUND JET :T609 ENDIF TITLE REAL(REY,DIAM,HEIGHT,WJET,RADJ,TKEIN,EPSIN,DTF,AIN,FLOW) REAL(CP,TJET,TAMB,QPLATE,QIN);CP=1.E3;TJET=300.0 QPLATE=10.E3;TAMB=TJET;INTEGER(NYJ,NYFS) REY=7.1E4;WJET=1.0;DIAM=1.0; RADJ=0.5*DIAM;HEIGHT=2.*DIAM TKEIN=0.01*WJET*WJET;EPSIN=.1643*TKEIN**1.5/(0.09*DIAM) GROUP 3. X-direction grid specification CARTES=F;NX=1;XULAST=0.1;AIN=0.5*RADJ*RADJ*XULAST GROUP 4. Y-direction grid specification IF(FINEG) THEN + NYJ=10;NYFS=30;NZ=40 ELSE + NYJ=10;NYFS=15;NZ=30 ENDIF NREGY=2; REGEXT(Y,5.*DIAM);IREGY=1;GRDPWR(Y,NYJ,RADJ,1.0) IREGY=2;GRDPWR(Y,NYFS,5.*DIAM-RADJ,1.5) GROUP 5. Z-direction grid specification GRDPWR(Z,NZ,HEIGHT,0.8) DTF=5.*HEIGHT/WJET/NZ GROUP 7. Variables stored, solved & named SOLVE(P1,V1,W1,H1);SOLUTN(P1,Y,Y,Y,N,N,N) SOLUTN(H1,Y,Y,Y,P,P,P) PATCH(PLATE,HWALL,1,NX,1,NY,NZ,NZ,1,1) COVAL(PLATE,H1,FIXFLU,QPLATE) IF(KEMOD) THEN + TURMOD(KEMODL);COVAL(PLATE,V1,LOGLAW,0.0);KELIN=1 + COVAL(PLATE,KE,LOGLAW,LOGLAW);COVAL(PLATE,EP,LOGLAW,LOGLAW) ELSE + COVAL(PLATE,V1,1.0,0.0);IRSMSM=2 + DTF=HEIGHT/WJET/NZ;TURMOD(REYSTRS,DTF,PLATE) ENDIF STORE(LEN1,ENUT,TMP1) GROUP 9. Properties of the medium (or media) RHO1=1.0;ENUL=WJET*DIAM/REY;FLOW=RHO1*WJET*AIN QIN=FLOW*TJET*CP PRT(H1)=0.9;PRNDTL(H1)=0.71;TMP1=LINH;TMP1A=0.0;CP1=CP GROUP 11. Initialization of variable or porosity fields FIINIT(W1)=1.E-10;FIINIT(V1)=0.0;FIINIT(H1)=CP*TAMB FIINIT(KE)=TKEIN;FIINIT(EP)=0.09*TKEIN**2/(10.*ENUL) PATCH(INWJET,INIVAL,1,1,1,NYJ,1,NZ,1,1) COVAL(INWJET,W1,ZERO,WJET) IF(.NOT.KEMOD) THEN + FIINIT(W2RS)=2.*FIINIT(KE)/3.;FIINIT(V2RS)=FIINIT(W2RS) + FIINIT(U2RS)=FIINIT(W2RS);FIINIT(VWRS)=0.3*FIINIT(KE) ENDIF GROUP 12. Convection and diffusion adjustments GROUP 13. Boundary conditions and special sources INLET(JET1,LOW,1,1,1,NYJ,1,1,1,1) VALUE(JET1,P1,RHO1*WJET);VALUE(JET1,W1,WJET) IF(KEMOD) THEN + VALUE(JET1,KE,TKEIN) ELSE + VALUE(JET1,W2RS,FIINIT(W2RS));VALUE(JET1,V2RS,FIINIT(V2RS)) + VALUE(JET1,U2RS,FIINIT(U2RS)) ENDIF VALUE(JET1,EP,EPSIN);VALUE(JET1,H1,CP*TJET) PATCH(TOP,LOW,1,1,NYJ+1,NY,1,1,1,1) COVAL(TOP,P1,1.E3,0.0);COVAL(TOP,W1,ONLYMS,0.0) COVAL(TOP,U1,ONLYMS,0.0);COVAL(TOP,V1,ONLYMS,0.0) COVAL(TOP,KE,ONLYMS,1.E-10);COVAL(TOP,EP,ONLYMS,1.E-10) COVAL(TOP,H1,ONLYMS,CP*TAMB) PATCH(SIDE,NORTH,1,1,NY,NY,1,NZ,1,1) COVAL(SIDE,P1,1.E3,0.0);COVAL(SIDE,W1,ONLYMS,0.0) COVAL(SIDE,U1,ONLYMS,0.0);COVAL(SIDE,V1,ONLYMS,0.0) COVAL(SIDE,KE,ONLYMS,1.E-10);COVAL(SIDE,EP,ONLYMS,1.E-10) COVAL(SIDE,H1,ONLYMS,CP*TAMB) GROUP 15. Termination of sweeps IF(KEMOD) THEN + LSWEEP=300 ELSE + LSWEEP=1000 ENDIF GROUP 16. Termination of iterations RESREF(P1)=1.E-12*FLOW/RHO1 RESREF(V1)=RESREF(P1)*RHO1*WJET; RESREF(W1)=RESREF(V1) RESREF(KE)=RESREF(P1)*RHO1*TKEIN; RESREF(EP)=RESREF(P1)*RHO1*EPSIN RESREF(H1)=1.E-12*(0.5*YVLAST**2*XULAST+QIN) GROUP 17. Under-relaxation devices IF(KEMOD) THEN + RELAX(W1,FALSDT,DTF); RELAX(V1,FALSDT,DTF) + RELAX(KE,FALSDT,DTF); RELAX(EP,FALSDT,DTF) + RELAX(H1,FALSDT,DTF*NZ) ELSE + RELAX(W1,FALSDT,DTF*4); RELAX(V1,FALSDT,DTF*4) + RELAX(H1,FALSDT,DTF*10); RELAX(VTRS,FALSDT,DTF/4) + RELAX(WTRS,FALSDT,DTF/4);LITER(H1)=30 ENDIF GROUP 22. Spot-value print-out IYMON=NY/2;IZMON=NZ-2 GROUP 23. Field print-out and plot control NPLT=5;IYPRL=NY;NZPRIN=1;TSTSWP=-1;WALPRN=T LIBREF = 609 STOP