GROUP 1. Run title and other preliminaries
 
 
  DISPLAY
   The case considered is the normal impingement of a turbulent
   axisymmetric jet on a heated flat plate. The flow geometry
   and conditions approximate to those reported experimentally
   by D.Cooper et al ( Int.J.Heat Mass Transfer, Vol.36, No.10,
   p2675,[1993] ). The jet issues into ambient fluid at a
   Reynolds number of 2.3E4 from a pipe located 2 pipe diameters
   above the electrically heated plate. The jet injection
   temperature is ambient so that the purpose of the flow process
   is to effect cooling. For the case of orthogonal impaction,
   the flow is axisymmetric and is directed outward along the
   surface giving rise to a radial wall jet. The simulation may
   be performed with the standard k-e model or with the Reynolds
   stress transport model. For the latter, the model employs
   differential transport equations for determining the turbulent
   fluxes of heat.
  ENDDIS
 
   The calculation performed is merely for demonstration purposes,
   but the test case may form the basis of a validation exercise
   which would require the following extensions: (a) a much finer
   mesh, particularly in the round jet-mixing layer, the radial
   wall and the thermal boundary layer; and (b) the implementation
   of fully-developed flow conditions at the jet discharge. Never-
   theless, the present computations show the correct trends in
   that the k-e model leads to excessive turbulence energies along
   the jet symmetry plane along the stagnation point. The RSTM
   simulation requires at least 1000 sweeps for complete convergence. 
   The k-e simulation only requires around 300 for convergence.
 
BOOLEAN(KEMOD,FINEG);KEMOD=F;FINEG=F

IF(KEMOD) THEN
+ TEXT(KE_2D IMPINGING ROUND JET        :T609
ELSE
+ TEXT(RSTM_2D IMPINGING ROUND JET        :T609
ENDIF
TITLE

REAL(REY,DIAM,HEIGHT,WJET,RADJ,TKEIN,EPSIN,DTF,AIN,FLOW)
REAL(CP,TJET,TAMB,QPLATE,QIN);CP=1.E3;TJET=300.0
QPLATE=10.E3;TAMB=TJET;INTEGER(NYJ,NYFS)
REY=7.1E4;WJET=1.0;DIAM=1.0; RADJ=0.5*DIAM;HEIGHT=2.*DIAM
TKEIN=0.01*WJET*WJET;EPSIN=.1643*TKEIN**1.5/(0.09*DIAM)
    GROUP 3. X-direction grid specification
CARTES=F;NX=1;XULAST=0.1;AIN=0.5*RADJ*RADJ*XULAST
    GROUP 4. Y-direction grid specification
IF(FINEG) THEN
+ NYJ=10;NYFS=30;NZ=40
ELSE
+ NYJ=10;NYFS=15;NZ=30
ENDIF
NREGY=2; REGEXT(Y,5.*DIAM);IREGY=1;GRDPWR(Y,NYJ,RADJ,1.0)
IREGY=2;GRDPWR(Y,NYFS,5.*DIAM-RADJ,1.5)
    GROUP 5. Z-direction grid specification
GRDPWR(Z,NZ,HEIGHT,0.8)
DTF=5.*HEIGHT/WJET/NZ
    GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1,H1);SOLUTN(P1,Y,Y,Y,N,N,N)
SOLUTN(H1,Y,Y,Y,P,P,P)
PATCH(PLATE,HWALL,1,NX,1,NY,NZ,NZ,1,1)
COVAL(PLATE,H1,FIXFLU,QPLATE)
IF(KEMOD) THEN
+ TURMOD(KEMODL);COVAL(PLATE,V1,LOGLAW,0.0);KELIN=1
+ COVAL(PLATE,KE,LOGLAW,LOGLAW);COVAL(PLATE,EP,LOGLAW,LOGLAW)
ELSE
+ COVAL(PLATE,V1,1.0,0.0);IRSMSM=2
+ DTF=HEIGHT/WJET/NZ;TURMOD(REYSTRS,DTF,PLATE)
ENDIF
STORE(LEN1,ENUT,TMP1)
    GROUP 9. Properties of the medium (or media)
RHO1=1.0;ENUL=WJET*DIAM/REY;FLOW=RHO1*WJET*AIN
QIN=FLOW*TJET*CP
PRT(H1)=0.9;PRNDTL(H1)=0.71;TMP1=LINH;TMP1A=0.0;CP1=CP
    GROUP 11. Initialization of variable or porosity fields
FIINIT(W1)=1.E-10;FIINIT(V1)=0.0;FIINIT(H1)=CP*TAMB
FIINIT(KE)=TKEIN;FIINIT(EP)=0.09*TKEIN**2/(10.*ENUL)
PATCH(INWJET,INIVAL,1,1,1,NYJ,1,NZ,1,1)
COVAL(INWJET,W1,ZERO,WJET)
IF(.NOT.KEMOD) THEN
+ FIINIT(W2RS)=2.*FIINIT(KE)/3.;FIINIT(V2RS)=FIINIT(W2RS)
+ FIINIT(U2RS)=FIINIT(W2RS);FIINIT(VWRS)=0.3*FIINIT(KE)
ENDIF
    GROUP 12. Convection and diffusion adjustments
      GROUP 13. Boundary conditions and special sources
INLET(JET1,LOW,1,1,1,NYJ,1,1,1,1)
VALUE(JET1,P1,RHO1*WJET);VALUE(JET1,W1,WJET)
IF(KEMOD) THEN
+ VALUE(JET1,KE,TKEIN)
ELSE
+ VALUE(JET1,W2RS,FIINIT(W2RS));VALUE(JET1,V2RS,FIINIT(V2RS))
+ VALUE(JET1,U2RS,FIINIT(U2RS))
ENDIF
VALUE(JET1,EP,EPSIN);VALUE(JET1,H1,CP*TJET)
PATCH(TOP,LOW,1,1,NYJ+1,NY,1,1,1,1)
COVAL(TOP,P1,1.E3,0.0);COVAL(TOP,W1,ONLYMS,0.0)
COVAL(TOP,U1,ONLYMS,0.0);COVAL(TOP,V1,ONLYMS,0.0)
COVAL(TOP,KE,ONLYMS,1.E-10);COVAL(TOP,EP,ONLYMS,1.E-10)
COVAL(TOP,H1,ONLYMS,CP*TAMB)
PATCH(SIDE,NORTH,1,1,NY,NY,1,NZ,1,1)
COVAL(SIDE,P1,1.E3,0.0);COVAL(SIDE,W1,ONLYMS,0.0)
COVAL(SIDE,U1,ONLYMS,0.0);COVAL(SIDE,V1,ONLYMS,0.0)
COVAL(SIDE,KE,ONLYMS,1.E-10);COVAL(SIDE,EP,ONLYMS,1.E-10)
COVAL(SIDE,H1,ONLYMS,CP*TAMB)
    GROUP 15. Termination of sweeps
IF(KEMOD) THEN
+ LSWEEP=300
ELSE
+ LSWEEP=1000
ENDIF
    GROUP 16. Termination of iterations
RESREF(P1)=1.E-12*FLOW/RHO1
RESREF(V1)=RESREF(P1)*RHO1*WJET; RESREF(W1)=RESREF(V1)
RESREF(KE)=RESREF(P1)*RHO1*TKEIN; RESREF(EP)=RESREF(P1)*RHO1*EPSIN
RESREF(H1)=1.E-12*(0.5*YVLAST**2*XULAST+QIN)
    GROUP 17. Under-relaxation devices
IF(KEMOD) THEN
+ RELAX(W1,FALSDT,DTF); RELAX(V1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF); RELAX(EP,FALSDT,DTF)
+ RELAX(H1,FALSDT,DTF*NZ)
ELSE
+ RELAX(W1,FALSDT,DTF*4); RELAX(V1,FALSDT,DTF*4)
+ RELAX(H1,FALSDT,DTF*10); RELAX(VTRS,FALSDT,DTF/4)
+ RELAX(WTRS,FALSDT,DTF/4);LITER(H1)=30
ENDIF
    GROUP 22. Spot-value print-out
IYMON=NY/2;IZMON=NZ-2
    GROUP 23. Field print-out and plot control
NPLT=5;IYPRL=NY;NZPRIN=1;TSTSWP=-1;WALPRN=T

 LIBREF = 609
STOP