PHOTON USE p phi msg USE OF EARTH GENERATED WALL-FUNCTIONS msg msg Pressure distribution: cl;red con p1 z max fi;.001 vec z max msg msg Pressto continue pause msg msg Temperature distribution: cl;red con tem1 z max fi;.001 vec z max msg msg Press to continue pause msg msg Concentration distribution: cl;red con c1 z max fi;.001 vec z max msg msg Press to continue pause msg msg Press e to END enduse GROUP 1. Run title and other preliminaries TEXT( USE OF EARTH GENERATED WALL-FUNCTIONS) CHAR(CTURB);BOOLEAN(TURBL) INTEGER(NXF,NXL,NYF,NYL,NZF,NZL,ISUM,N1) REAL(VFRAC,VIN,TIN,CIN) VIN=10.;TIN=100.;CIN=-1. MESG( MESG( DEMO. OF EGWF FOR FLOW AROUND A HEATED SOLUBLE CUBE MESG( FOR VARIOUS TURBULENCE MODELS AND LAMINAR FLOW MESG( MESG( The flow enters the W-S-L corner of the domain, MESG( impinges on the solid cube, which is heated and MESG( which has constant C1 concentration, and then MESG( leaves the domain through the E-N-H corner. On MESG( 3 faces of the cube the wall-functions are EGWFs MESG( (ie. EARTH Generated Wall-Functions), and on the MESG( other 3 faces the wall-functions are set as source MESG( terms by means of GROUND coding MESG( MESG( Enter the turbulence model option; default MESG( is KEMODL. MESG( The options are: MESG( LAM - laminar flow MESG( TURB - simple mixing-length turbulence MESG( LVEL - LVEL algebraic turbulence model MESG( KLMODL - the k-l model of turbulence MESG( KEMODL - the k-e model of turbulence MESG( MESG( For further info. please see the PHOENICS MESG( encyclopaedia MESG( READVDU(CTURB,CHAR,KEMODL) MESG( MESG( Enter the COefficient for the WALL-functions; MESG( the default is GRND2 (LOGLAW). MESG( The options are: MESG( 1/PRNDTL() - suitable for laminar flow MESG( GRND1 (BLASIUS) - suitable for laminar flow MESG( GRND2 (LOGLAW) - equilibrium log-law wall- MESG( function for turbulent flows MESG( READVDU(WALLCO,REAL,GRND2) MESG( TURBL=:CTURB:.NE.LAM GROUP 3. X-direction grid specification NX=7;GRDPWR(X,NX,1.0,1.0) NXF=NX/3+1;NXL=NX-NX/3 GROUP 4. Y-direction grid specification NY=7;GRDPWR(Y,NY,1.0,1.0) NYF=NY/3+1;NYL=NY-NY/3 GROUP 5. Z-direction grid specification NZ=7;GRDPWR(Z,NZ,1.0,1.0) NZF=NZ/3+1;NZL=NZ-NZ/3 GROUP 7. Variables stored, solved & named *** Activate the harmonic averaging for solved variables SOLVE(P1);SOLUTN(P1,Y,Y,Y,P,P,P) SOLVE(TEM1);SOLUTN(TEM1,Y,Y,Y,P,P,Y) SOLUTN(C1,Y,Y,Y,P,P,Y) ISUM=0 IF(NX.GT.1) THEN + ISUM=ISUM+1;SOLVE(U1);SOLUTN(U1,P,P,Y,P,P,Y) ENDIF IF(NY.GT.1) THEN + ISUM=ISUM+1;SOLVE(V1);SOLUTN(V1,P,P,Y,P,P,Y) ENDIF IF(NZ.GT.1) THEN + ISUM=ISUM+1;SOLVE(W1);SOLUTN(W1,P,P,Y,P,P,Y) ENDIF VFRAC=ISUM**0.5 STORE(PRPS,BLOK) IF (TURBL) THEN + TURMOD(:CTURB:) + SOLUTN(KE,P,P,P,P,P,Y) + SOLUTN(EP,P,P,P,P,P,Y) ELSE IF (:CTURB: .EQ. TURB) THEN + STORE(LEN1,VIST) ENDIF *** Store variables to contain the SKIN-friction factor, *** STANton number, and shear-STReSs STORE(SKIN,STAN,STRS) *** Set block corrections for all variables at every *** solver iteration IVARBK=-1;ISOLBK=1 GROUP 8. Terms (in differential equations) & devices *** Get rid of potentially confusing heat sources that are *** irrelevant to the tests being performed TERMS(TEM1,N,P,P,P,P,P) GROUP 9. Properties of the medium (or media) *** Set up the properties of the materials to be used *** NB. the viscosity & conductivity are boosted to make the *** viscous effects more noticeable for the laminar case CSG10='q1' MATFLG=T;NMAT=2 55 1.0 1.e-3 1000. 2.5 4.0e-3 155 8000. 1.0 500. 50. 0.0 *** Set up the turbulence models for the turbulent cases *** NB. at present limited to an artificially simple mixing *** length model IF (:CTURB: .EQ. TURB .OR. :CTURB: .EQ. KLMODL) THEN + EL1=LINEARX + EL1A=(XULAST**2+YVLAST**2+ZWLAST**2)**0.5;EL1B=0.0 + IF (:CTURB: .EQ. TURB) THEN + ENUT=PROPLEN;ENUTA=0.0;ENUTB=0.1 + ENDIF ENDIF PRNDTL(TEM1)=CONDFILE;ENUL=FILE; GROUP 11. Initialization of variable or porosity fields *** Initiallise the solved variables FIINIT(U1)=VIN/VFRAC;FIINIT(V1)=VIN/VFRAC;FIINIT(W1)=VIN/VFRAC FIINIT(TEM1)=10.;FIINIT(C1)=CIN *** Settings of turbulence variables (KE & EP) are only *** made for k-l and k-e models CASE :CTURB: OF WHEN KEMODL,6 + FIINIT(KE)=0.01*VIN*VIN + FIINIT(EP)=FIINIT(KE)**1.5 WHEN KLMODL,6 + FIINIT(KE)=0.01*VIN*VIN ENDCASE INIADD=F *** Define the extents of liquid and solid FIINIT(PRPS)=55. PATCH(BLOCKI,INIVAL,NXF,NXL,NYF,NYL,NZF,NZL,1,1) INIT (BLOCKI,PRPS,0.0,155.) *** Set up the block-corrections INIT(BLOCKI,BLOK,0.0,2.0) FIINIT(BLOK)=1.0;INIT(BLOCKI,BLOK,0.0,2.0) *** Complete initiallisations FIINIT(SKIN)=0.0;FIINIT(STAN)=0.0;FIINIT(STRS)=0.0 GROUP 13. Boundary conditions and special sources *** Set the C1 and TEM1 sources in the blocks: fixed *** flux for heat, and fixed values of C1 (heated *** rock-salt dissolving into water?) PATCH(BLOCK,CELL,NXF,NXL,NYF,NYL,NZF,NZL,1,1) COVAL(BLOCK,C1,FIXVAL,-CIN);COVAL(BLOCK,TEM1,FIXFLU,100.) *** Activate the EARTH-Generated Wall-Functions which *** sets default wall-functions on the block EGWF=T *** Setup inlet conditions (3 PATCHes) IF(NX.GT.1) THEN + INLET(XINL,WEST,1,1,1,NYF-1,1,NZF-1,1,LSTEP) + VALUE(XINL,P1,RHO1*VIN) ;VALUE(XINL,U1,VIN/VFRAC) + VALUE(XINL,V1,VIN/VFRAC);VALUE(XINL,W1,VIN/VFRAC) + VALUE(XINL,TEM1,TIN);VALUE(XINL,C1,CIN) ENDIF IF(NZ.GT.1) THEN + INLET(ZINL,LOW,1,NXF-1,1,NYF-1,1,1,1,LSTEP) + VALUE(ZINL,P1,RHO1*VIN) ;VALUE(ZINL,U1,VIN/VFRAC) + VALUE(ZINL,V1,VIN/VFRAC);VALUE(ZINL,W1,VIN/VFRAC) + VALUE(ZINL,TEM1,TIN);VALUE(ZINL,C1,CIN) ENDIF IF(NY.GT.1) THEN + INLET(YINL,SOUTH,1,NXF-1,1,1,1,NZF-1,1,LSTEP) + VALUE(YINL,P1,RHO1*VIN) ;VALUE(YINL,U1,VIN/VFRAC) + VALUE(YINL,V1,VIN/VFRAC);VALUE(YINL,W1,VIN/VFRAC) + VALUE(YINL,TEM1,TIN);VALUE(YINL,C1,CIN) ENDIF *** Setup the outlet (3 PATCHes) IF(NX.GT.1) THEN + OUTLET(XOUTL,EAST,NX,NX,NYL+1,NY,NZL+1,NZ,1,LSTEP) + VALUE(XOUTL,P1,0.0) ENDIF IF(NY.GT.1) THEN + OUTLET(ZOUTL,HIGH,NXL+1,NX,NYL+1,NY,NZ,NZ,1,LSTEP) + VALUE(ZOUTL,P1,0.0) ENDIF IF(NZ.GT.1) THEN + OUTLET(YOUTL,NORTH,NXL+1,NX,NY,NY,NZL+1,NZ,1,LSTEP) + VALUE(YOUTL,P1,0.0) ENDIF *** Put in wall-PATCHes for 3 sides of the block *** These will over-ride the EGWFs IF(NX.GT.1) THEN + PATCH(XBWALL,WWALL,NXL+1,NXL+1,NYF,NYL,NZF,NZL,1,LSTEP) + COVAL(XBWALL,V1,WALLCO,SAME);COVAL(XBWALL,W1,WALLCO,SAME) + COVAL(XBWALL,C1,WALLCO,SAME);COVAL(XBWALL,TEM1,WALLCO,SAME) ENDIF IF(NY.GT.1) THEN + PATCH(YBWALL,SWALL,NXF,NXL,NYL+1,NYL+1,NZF,NZL,1,LSTEP) + COVAL(YBWALL,W1,WALLCO,SAME);COVAL(YBWALL,U1,WALLCO,SAME) + COVAL(YBWALL,C1,WALLCO,SAME);COVAL(YBWALL,TEM1,WALLCO,SAME) ENDIF IF(NZ.GT.1) THEN + PATCH(ZBWALL,LWALL,NXF,NXL,NYF,NYL,NZL+1,NZL+1,1,LSTEP) + COVAL(ZBWALL,U1,WALLCO,SAME);COVAL(ZBWALL,V1,WALLCO,SAME) + COVAL(ZBWALL,C1,WALLCO,SAME);COVAL(ZBWALL,TEM1,WALLCO,SAME) ENDIF *** Apply wall-PATCHes to the domain boundaries IF(NX.GT.1) THEN + WALL(X1WALL,WEST,1,1,NYF,NY,1,NZ,1,LSTEP) + COVAL(X1WALL,C1,WALLCO,0.0);COVAL(X1WALL,TEM1,WALLCO,0.0) + WALL(X1WALA,WEST,1,1,1,NYF-1,NZF,NZ,1,LSTEP) + COVAL(X1WALA,C1,WALLCO,0.0);COVAL(X1WALA,TEM1,WALLCO,0.0) + WALL(XNWALL,EAST,NX,NX,1,NY,1,NZL,1,LSTEP) + COVAL(XNWALL,C1,WALLCO,0.0);COVAL(XNWALL,TEM1,WALLCO,0.0) + WALL(XNWALA,EAST,NX,NX,1,NYL,NZL+1,NZ,1,LSTEP) + COVAL(XNWALA,C1,WALLCO,0.0);COVAL(XNWALA,TEM1,WALLCO,0.0) ENDIF IF(NY.GT.1) THEN + WALL(Y1WALL,SOUTH,1,NX,1,1,NZF,NZ,1,LSTEP) + COVAL(Y1WALL,C1,WALLCO,0.0);COVAL(Y1WALL,TEM1,WALLCO,0.0) + WALL(Y1WALA,SOUTH,NXF,NX,1,1,1,NZF-1,1,LSTEP) + COVAL(Y1WALA,C1,WALLCO,0.0);COVAL(Y1WALA,TEM1,WALLCO,0.0) + WALL(YNWALL,NORTH,1,NXL,NY,NY,1,NZ,1,LSTEP) + COVAL(YNWALL,C1,WALLCO,0.0);COVAL(YNWALL,TEM1,WALLCO,0.0) + WALL(YNWALA,NORTH,NXL+1,NX,NY,NY,1,NZL,1,LSTEP) + COVAL(YNWALA,C1,WALLCO,0.0);COVAL(YNWALA,TEM1,WALLCO,0.0) ENDIF IF(NZ.GT.1) THEN + WALL(Z1WALL,LOW,NXF,NX,1,NY,1,1,1,LSTEP) + COVAL(Z1WALL,C1,WALLCO,0.0);COVAL(Z1WALL,TEM1,WALLCO,0.0) + WALL(Z1WALA,LOW,1,NXF-1,NYF,NY,1,1,1,LSTEP) + COVAL(Z1WALA,C1,WALLCO,0.0);COVAL(Z1WALL,TEM1,WALLCO,0.0) + WALL(ZNWALL,HIGH,1,NX,1,NYL,NZ,NZ,1,LSTEP) + COVAL(ZNWALL,C1,WALLCO,0.0);COVAL(ZNWALL,TEM1,WALLCO,0.0) + WALL(ZNWALA,HIGH,1,NXL,NYL+1,NY,NZ,NZ,1,LSTEP) + COVAL(ZNWALA,C1,WALLCO,0.0);COVAL(ZNWALA,TEM1,WALLCO,0.0) ENDIF *** If the LVEL model is used then for wall-PATCHes *** set COVALs for the LTLS variable used in the calculation *** of the wall-distance IF(:CTURB: .EQ. KEMODL .OR. :CTURB: .EQ. KLMODL) THEN + COVAL(XBWALL,KE,WALLCO,WALLCO) + COVAL(X1WALL,KE,WALLCO,WALLCO);COVAL(XNWALL,KE,WALLCO,WALLCO) + COVAL(YBWALL,KE,WALLCO,WALLCO) + COVAL(Y1WALL,KE,WALLCO,WALLCO);COVAL(YNWALL,KE,WALLCO,WALLCO) + COVAL(ZBWALL,KE,WALLCO,WALLCO) + COVAL(Z1WALL,KE,WALLCO,WALLCO);COVAL(ZNWALL,KE,WALLCO,WALLCO) ENDIF IF(:CTURB: .EQ. KEMODL) THEN + COVAL(XBWALL,EP,WALLCO,WALLCO) + COVAL(X1WALL,EP,WALLCO,WALLCO);COVAL(XNWALL,EP,WALLCO,WALLCO) + COVAL(YBWALL,EP,WALLCO,WALLCO) + COVAL(Y1WALL,EP,WALLCO,WALLCO);COVAL(YNWALL,EP,WALLCO,WALLCO) + COVAL(ZBWALL,EP,WALLCO,WALLCO) + COVAL(Z1WALL,EP,WALLCO,WALLCO);COVAL(ZNWALL,EP,WALLCO,WALLCO) ENDIF IF(:CTURB: .EQ. LVEL) THEN + COVAL(XBWALL,LTLS,1.0,0.0) + COVAL(X1WALL,LTLS,1.0,0.0);COVAL(XNWALL,LTLS,1.0,0.0) + COVAL(YBWALL,LTLS,1.0,0.0) + COVAL(Y1WALL,LTLS,1.0,0.0);COVAL(YNWALL,LTLS,1.0,0.0) + COVAL(ZBWALL,LTLS,1.0,0.0) + COVAL(Z1WALL,LTLS,1.0,0.0);COVAL(ZNWALL,LTLS,1.0,0.0) ENDIF GROUP 15. Termination of sweeps LSWEEP=50 GROUP 16. Termination of iterations LITER(TEM1)=20;LITER(C1)=20;LITER(U1)=10;LITER(V1)=10 GROUP 17. Under-relaxation devices RELAX(U1,FALSDT,5.*XULAST/(NX*VIN)) RELAX(V1,FALSDT,5.*YVLAST/(NY*VIN)) RELAX(W1,FALSDT,5.*ZWLAST/(NZ*VIN)) RELAX(KE,FALSDT,5.*YVLAST/(NY*VIN)) RELAX(EP,FALSDT,5.*YVLAST/(NY*VIN)) RELAX(TEM1,FALSDT,1000.); RELAX(C1,FALSDT,1000.) GROUP 19. USEGRX=T GROUP 21. Print-out of variables OUTPUT(P1,Y,P,P,Y,Y,Y);OUTPUT(U1,Y,P,P,Y,Y,Y) OUTPUT(V1,Y,P,P,Y,Y,Y);OUTPUT(W1,Y,P,P,Y,Y,Y) OUTPUT(TEM1,Y,P,P,Y,Y,Y);OUTPUT(C1,Y,P,P,Y,Y,Y) IF (:CTURB: .EQ. KEMODL .OR. :CTURB: .EQ. KLMODL) THEN + OUTPUT(KE,Y,P,P,Y,Y,Y) ENDIF GROUP 22. Spot-value print-out IXMON=NX-1;IYMON=NY-1;IZMON=NZ-1;TSTSWP=-1 GROUP 23. Field print-out and plot control NXPRIN=1;NYPRIN=1;NZPRIN=1 IF(NZ.GT.1) THEN + PATCH(CONZ,CONTUR,1,NX,1,NY,NZ/2+1,NZ/2+1,1,1) + PLOT (CONZ,P1,0.0,20.);PLOT (CONZ,TEM1,0.0,20.) + PLOT (CONZ,C1,0.0,20.) + PATCH(PRFZ,PROFIL,NX/2+1,NX/2+1,NY/2+1,NY/2+1,1,NZ,1,1) + PLOT (PRFZ,TEM1,100.0,1000.);PLOT (PRFZ,C1,-1.,1.) ENDIF IF(NX.GT.1) THEN + PATCH(PRFX,PROFIL,1,NX,NY/2+1,NY/2+1,NZ/2+1,NZ/2+1,1,1) + PLOT (PRFX,TEM1,100.0,1000.);PLOT (PRFX,C1,-1.,1.) + PATCH(CONX,CONTUR,NX/2+1,NX/2+1,1,NY,1,NZ,1,1) + PLOT (CONX,P1,0.0,20.) + PLOT (CONX,TEM1,0.0,20.);PLOT (CONX,C1,0.0,20.) ENDIF IF(NY.GT.1) THEN + PATCH(CONY,CONTUR,1,NX,NY/2+1,NY/2+1,1,NZ,1,1) + PLOT (CONY,P1,0.0,20.);PLOT (CONY,TEM1,0.0,20.) + PLOT (CONY,C1,0.0,20.) + PATCH(PRFY,PROFIL,NX/2+1,NX/2+1,1,NY,NZ/2+1,NZ/2+1,1,1) + PLOT (PRFY,TEM1,100.0,1000.);PLOT (PRFY,C1,-1.,1.) ENDIF GROUP 24. Dumps for restarts