CCM Test: Laminar natural convection in concentric and eccentric annuli. ************************************************************** DISPLAY The problem considers the prediction of heat transfer due to natural convection between horizontal concentric and eccentric cylinders of radii RINT and REXT and vertical eccentricity ECCEN (or spheres, LSPH=T). The inner cylinder is heated (THOT) and the outer cylinder is cooled (TCOLD). The flow between cylinders for Rayleigh number (RANUM) of 4.8e4 and 4.9e4 has been investigated experimentally by T. Kuehn and R. Goldstein (J. of Fluid Mechanics, vol.74, pp. 695-719, 1976). User can switch from the default colocated computational algorithm (CCM) to the staggered one (STAG) by setting LCCM= F. --------------------------------------------------------- ENDDIS L(PAUSE ************************************************************** BOOLEAN(LCCM,LNORT,LSPH); LCCM= T; LSPH= F ************************************************************** PHOTON USE p ; ; ; ; ; msg Computational Domain: g k 1 msg Press Any Key to Continue... pause cl set vec av off msg Velocity Vectors: vec k 1 sh msg Press Any Key to Continue... pause cl msg Contours of Pressure: con p1 k 1 fi;0.005 msg Press Any Key to Continue... pause cl msg Contours of Temprature: con temp k 1 fi;0.005 msg Press Eto exit PHOTON ... ENDUSE ************************************************************** GROUP 1. Run title and other preliminaries ************************************************************** For CCM: BUOYA = Gx BUOYB = Gy BUOYC = Gz BUOYE # 0.0 sets the following method Rho * BUOYD *(H - BUOYE) * G resolute. ************************************************************** REAL(RANUM,THOT,TCOLD,RINT,REXT,ECCEN,DTHYD) RANUM= 4.8E4; BUOYB= -1.0; THOT= 1.0; TCOLD= 0.0 IF(LCCM) THEN + BUOYD= RANUM; BUOYE= TCOLD + TEXT(CCM : Laminar convection in Annuli. + LNORT= T ELSE + BUOYD= -RANUM; BUOYE= -BUOYD*TCOLD + TEXT(STAG: Laminar convection in Annuli. + NONORT= T ENDIF TITLE RINT= 0.5; REXT= 2.6*RINT; ECCEN= -0.623*(REXT-RINT) NX = 30; NY = 20 GROUP 6. Body-fitted coordinates or grid distortion BFC=T; GSET(D,NX,NY,1,1.0,1.0,1.0) GSET(P,P1,0.0,0.0, 0.0); GSET(P,P2,0.0,2*REXT,0.0) GSET(P,P3,0.0,REXT+ECCEN+RINT,0.0) GSET(P,P4,0.0,REXT+ECCEN-RINT,0.0) GSET(L,L12,P1,P2,NX,1.3,ARC,REXT,REXT, 0.0) GSET(L,L34,P3,P4,NX,1.0,ARC,RINT,REXT+ECCEN,0.0) GSET(L,L23,P2,P3,NY,1.0); GSET(L,L41,P4,P1,NY,1.0) GSET(F,F1,P1,-,P2,-,P3,-,P4,-); GSET(M,F1,+I+J,1,1,1) IF(LSPH) THEN + GSET(C,K:NZ+1:,F,K1,1,NX,1,NY,RY,-0.2,0.0,0.0,INC,1.0); ELSE + GSET(C,K:NZ+1:,F,K1,1,NX,1,NY, +, 0.0,0.0,1.0,INC,1.0); ENDIF GVIEW(Z); VIEW GROUP 7. Variables stored, solved & named SOLVE(P1,U1,V1); NAME(H1)=TEMP; SOLUTN(TEMP,Y,Y,Y,N,N,N) IF(LCCM) THEN L($F150) ENDIF GROUP 8. Terms (in differential equations) & devices TERMS(TEMP,N,Y,Y,Y,Y,Y) GROUP 9. Properties of the medium (or media) ENUL= 1.0; RHO1= 1.0 ; cp1=1.0 GROUP 13. Boundary conditions and special sources ** Walls: ***** Adiabatic walls: PATCH(WW,WWALL,1, 1, 1,1, 1,1,1,1) PATCH(WE,EWALL,NX,NX,1,NY,1,1,1,1) ***** Hot wall: PATCH(WN,NWALL,1,NX,NY,NY,1,1,1,1); COVAL(WN,TEMP,1.0,THOT) ***** Cold wall: PATCH(WS,SWALL,1,NX,1, 1,1,1,1,1); COVAL(WS,TEMP,1.0,TCOLD) IF(LCCM) THEN + COVAL(WS,UC1,1.0,0.0); COVAL(WS,VC1,1.0,0.0) + COVAL(WN,UC1,1.0,0.0); COVAL(WN,VC1,1.0,0.0) ELSE + COVAL(WS,U1, 1.0,0.0); COVAL(WS,V1, 1.0,0.0) + COVAL(WN,U1, 1.0,0.0); COVAL(WN,V1, 1.0,0.0) ENDIF ** Buoyancy force: IF(.NOT.LCCM) THEN + PATCH(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,1) + COVAL(BUOY,U1,FIXFLU,BOUSS); COVAL(BUOY,V1,FIXFLU,BOUSS) ENDIF ** Reference pressure at the center of the cavity: PATCH(REFP,CELL,NX/2,NX/2,NY/2,NY/2,1,1,1,1);COVAL(REFP,P1,FIXP,0.0) IF(LCCM) THEN + COVAL(REFP,UC1,ONLYMS,0.0); COVAL(REFP,VC1,ONLYMS,0.0) ELSE + COVAL(REFP,U1, ONLYMS,0.0); COVAL(REFP,V1, ONLYMS,0.0) ENDIF GROUP 15. Termination of sweeps LSWEEP = 60; TSTSWP = -1 GROUP 16. Termination of iterations SELREF = T; RESFAC = 1.E-3 GROUP 17. Under-relaxation devices DTHYD = RINT*RINT/NX/RANUM**0.5 IF(LCCM) THEN + RELAX(P1,LINRLX,0.5) ELSE + RELAX(P1,LINRLX,0.1) + RELAX(U1,FALSDT,DTHYD); RELAX(V1,FALSDT,DTHYD) ENDIF GROUP 19. Data communicated by satellite to GROUND IF(LCCM) THEN * LSG4 activates non-orthogonality treatment in CCM/MBFGE. + LSG4= LNORT ENDIF GROUP 21. Print-out of variables OUTPUT(P1,Y,N,N,Y,Y,Y); OUTPUT(TEMP,Y,N,N,Y,Y,Y) GROUP 22. Spot-value print-out IXMON= NX/2+1; IYMON= NY/2+1; IZMON= 1